首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   

2.
1961—2017年基于地面观测的新疆积雪时空变化研究   总被引:4,自引:4,他引:0  
选取新疆89个气象站1961—2017年逐日积雪深度观测资料, 分析近60 a新疆冬季最大积雪深度及积雪日数的时空变化特征。结果表明: 新疆冬季最大积雪深度以天山为界, 天山以北多于南部, 北疆北部和伊犁河谷最大达60 ~ 100 cm, 天山山区及天山北坡30 ~ 60 cm, 南疆大部地区不足20 cm; 新疆北部最大雪深多出现在1996年以后, 也是新疆气候由暖干转为暖湿的阶段。近60 a新疆区域尤其是北疆、 天山山区冬季最大积雪深度呈显著增加趋势, 南疆略有增加; 89个气象站中87.6%呈增加趋势, 20个显著增加, 主要分布在天山以北地区。分析不同积雪深度出现的日数, 新疆区域、 北疆地区、 天山山区≤10 cm积雪约占积雪总日数的48% ~ 58%, 10 ~ 20 cm积雪占24% ~ 32%, 20 ~ 30 cm积雪占12% ~ 15%, >30 cm积雪约占5%左右; 南疆地区以≤5 cm积雪为主。新疆区域、 北疆地区以及天山山区积雪日数总体呈减少趋势, 其中≤10 cm积雪日数减少, 尤其北疆显著减少, >20 cm积雪日数显著增加, 南疆变化不明显; 空间变化趋势分布基本与区域变化一致。  相似文献   

3.
新疆北部地区季节性积雪密度变化特征分析   总被引:3,自引:1,他引:3  
选取新疆北部地区季节性积雪期的定点站和典型区域,应用北疆20个气象站点观测资料和使用便携式测雪仪(Snow Fork),在不同地域、不同雪层和不同时间进行观测与测量,并且在积雪稳定期中的一次降雪过程对新雪密度变化过程中影响它的诸多因子进行观测,对新疆北部地区冬季季节性积雪密度变化特征进行的观测和分析.结果表明:雪面辐射热量和雪层内温度梯度对积雪密度起主要作用,变化主要是通过雪层内深霜和粗粒雪层的温度减小而实现的;在隆冬期全层积雪密度最大的为深霜层,入春2月下旬回暖期以后,由于雪层含水率的增加,季节性积雪密度最大层则为粒雪层.  相似文献   

4.
1953 - 2016年华山积雪变化特征及其与气温和降水的关系   总被引:2,自引:1,他引:1  
李亚丽  雷向杰  李茜  余鹏  韩婷 《冰川冻土》2020,42(3):791-800
利用华山气象站1953 - 2016年气象观测资料和1989 - 2016年Landsat TM卫星遥感影像数据, 分析华山积雪变化的基本特征及其与气温、 降水和大气环流的关系。结果表明: 1953 - 2016年华山平均积雪日数78.5 d, 积雪主要出现在每年的10月 - 次年5月, 64 a来积雪初日推迟, 终日提前, 初终间日数减少, 年度、 冬半年、 冬季积雪日数分别以8.3 d?(10a)-1、 7.6 d?(10a)-1、 4.7 d?(10a)-1的减少率显著减少。1981 - 2016年华山年度最大积雪深度减少趋势不显著, 年度累积积雪深度以88.2 cm?(10a)-1的减少率显著减少, 一年中积雪日数、 最大积雪深度和累积积雪深度的减少(小)趋势均以3月最为显著。1989 - 2016年华山区域积雪面积、 浅雪和深雪面积减少趋势不明显。1953 - 2016年华山年度、 冬半年、 冬季平均气温升高, 降水量减少。积雪日数与平均气温存在显著的负相关, 与降水量存在显著的正相关, 气温是影响华山积雪日数的最主要因素。年度、 冬半年和冬季积雪日数突变年份与相应时段平均气温突变年份相近。1953 - 2016年华山冬半年、 冬季平均气温和降水量均与大气环流指数相关显著, 华山冬半年和冬季积雪日数与同期西藏高原指数、 印缅槽强度指数、 南极涛动指数和西太平洋副高西伸脊点指数为明显的负相关, 与850 hPa东太平洋信风指数、 亚洲区极涡面积指数为明显正相关。  相似文献   

5.
全球变暖对中国区域积雪变化影响的数值模拟   总被引:9,自引:7,他引:2  
对20km高水平分辨率区域气候模式(RegCM3)所模拟的全球变暖背景下,中国区域未来积雪变化进行了分析.检验了模式对当代(1961-1990年)积雪日数、积雪量、积雪开始和结束时间的模拟,结果表明:与观测相比,模式对这些变量均有较好的模拟能力,但模拟的积雪日数和积雪量偏多,积雪开始时间偏早,结束日期偏晚.21世纪末(2071-2100年)在IPCC SRES A2温室气体排放情景下,中国大部分地区积雪日数和积雪量将减少;积雪开始时间推后,结束时间提前,但在各个地区表现也有所不同,并在个别地区出现相反的变化.将中国区域分为东北、西北、青藏高原3个分区,结果显示:各分区平均积雪量均为减少,积雪开始时间推后,而积雪结束时间则都将提前,其中,青藏高原地区的变化最为显著.  相似文献   

6.
以太子河流域为研究区域,采用HBV水文模型对流域的水文过程进行模拟,并选取RegCM4.4区域气候模式输出的平均气温和降水数据来驱动HBV水文模型,模拟逐日径流过程,分析RCP4.5排放情景下未来太子河流域径流的演变。结果表明,HBV水文模型在太子河流域模拟效果较好,率定期与验证期Nash效率系数与确定性系数均在0.60以上,模型基本模拟出了洪水对降水的响应过程。RCP4.5情景下,2021 2070年太子河流域年平均气温呈持续升温趋势,流域降水和年径流深度呈微弱减少趋势。相较于基准期,年径流深度将增多9.79%,夏季和秋季径流深度上升明显。径流分位数的变化表明,峰值极端径流和枯水极端径流均较基准期有不同程度的增多,未来太子河流域发生极端洪涝的可能性较高。  相似文献   

7.
地形对天山积雪冻融变化的影响分析   总被引:1,自引:0,他引:1  
胡伟杰  刘海隆  王辉  赵文宇 《冰川冻土》2016,38(5):1227-1232
天山积雪是新疆水资源的重要来源,地形对积雪的空间分布和消融有重要影响,分析地形对天山积雪冻融过程的影响具有重要的理论意义.基于2005-2014年的MODIS/Terra积雪8 d合成数据(MOD10A2)与数字高程模型(DEM)数据,分析了天山积雪覆盖随高程、坡度和坡向的季节变化规律.分析结果表明:(1)在不同季节里,不同高程中的融雪和积雪过程同步发生,其中在春季和冬季,雪盖变化较大的区域主要分布在低海拔和高海拔地区;而在夏、秋两季,雪盖变化较大的区域主要分布在中海拔地区.(2)在不同季节,不同坡度的积雪冻融过程也同步进行,但春季和冬季积雪呈线性变化,在缓坡和陡坡地区变化明显;夏季和秋季积雪变化缓慢,在中坡变化显著.(3)天山积雪变化随坡向具有对称性和周期性.积雪变化呈现北坡大、南坡小,春、冬季大,夏、秋季小的特点.在波动周期内,夏秋季积雪变化波动较大,变化趋势与春、冬季相反.研究结果可为融雪型洪水预报提供科学依据.  相似文献   

8.
CMIP5多模式集合对南亚印度河流域气候变化的模拟与预估   总被引:1,自引:0,他引:1  
利用印度河流域CRU、APHRODITE和CMIP5多模式逐月气温、降水格点数据集, 评估了CMIP5模式集合对印度河流域气候变化的模拟能力; 对多模式集合数据进行了偏差订正, 并对流域2046-2065年和2081-2100年气候变化进行了预估. 结果表明: 气候模式对流域年平均气温时间变化和空间分布特征有着较强的模拟能力, 时间空间相关系数均达到了0.01的显著性水平, 尤其对夏季气温的模拟要优于其他季节; 模式对降水的季节性波动也有着较好的模拟能力. 偏差订正后的预估结果表明, RCP2.6、4.5、8.5情景下, 相对于基准期(1986-2005年), 21世纪中期(2046-2065年)和末期(2081-2100年)整个流域年平均气温都有一定上升, 且流域上游增幅较大; 除RCP4.5情景下21世纪中期流域有弱减少趋势外, 年降水量都将有一定增长. 未来夏季持续升温将引起源区冰川的进一步消融, 春季降水对于中高海拔地区水资源的贡献将减弱; 流域北部高海拔区域冬季降水的增加有助冰川累积和上游水资源的增加, 东部高海拔区域冬季降水的减少会减少上游水资源. 两时期夏季降水都有一定的增长, 洪涝的发生风险加大; 流域暖事件和强降水事件也将可能增多.  相似文献   

9.
西部高寒河源区因冰川积雪冻土等特殊的地理环境,其径流过程的模拟与预测一直是水文学研究的难点和热点问题之一,全球气候变暖为这一地区的水文模拟提出了新的挑战。以雅鲁藏布江拉孜以上流域为研究区域,基于可考虑冰川积雪融水的SWAT分布式水文模型对拉孜站径流过程进行模拟,评估SWAT模型在高寒河源区的适用性。基于未来气候变化情景,统计分析了未来研究区降水、气温的变化趋势,预估了气候变化对区域径流过程的影响。结果表明:SWAT模型在拉孜以上流域径流过程模拟中具有较好的适用性,模型在率定期和验证期月尺度NS系数分别达到了0.78和0.84;未来研究区降水、气温均呈现出增加趋势,且随着排放情景的上升,气温、降水增加幅度有变大趋势;未来研究区不同时段径流量也呈现出不同的增加趋势,在2020~2049年的RCP2.6、RCP4.5和RCP8.5情景下,相较于基准期径流分别增加了约11.8%、14.0%、16.5%,为下游水资源可持续开发利用带来了更大的挑战。  相似文献   

10.
北京-张家口地区冬春季积雪特征分析   总被引:2,自引:4,他引:2  
2022年冬奥会将在北京-张家口(以下简称北-张地区)举办,揭示该地区的积雪变化特征及其在全球变暖背景下的发展趋势,对冬奥会的筹备以及当地的积雪资源的开发利用等方面都有重要意义。利用2002-2014年MODIS遥感积雪产品提取了研究区域积雪数据,结合1966-2013年台站积雪、气温和降水资料和DEM数据,分析了积雪的时空分布特征,并对冬奥会场地进行积雪资源评价。结果表明:2002-2013冬春年北张地区的整体积雪频率较小,多处于0~0.2之间,但场馆区2月的积雪频率多在0.5以上,最大值接近0.9左右,积雪的分布呈带状和点状。积雪覆盖率最大值出现在1月初,达到0.23。积雪的形成缓慢,但是消亡迅速。1966-2012冬春年冬季积雪日数的波动幅度大于春季,延庆和崇礼县的2月份积雪日数分别为4.6d和13.9d,且均呈下降状态。积雪初终日均有提前,但整体的积雪期在减少。北京和张家口整体的最大积雪深度变化平稳,在1966-1980年和2000-2012年处于高值区,波动较大,其他年份最大雪深处于低值变化平稳,延庆和崇礼县的2月份最大积雪深度分别为3.6cm和5.1cm。通过分析积雪指标与气象因子(气温、降水)的相关关系发现,在年内(年际)变化上,积雪指标与气温(降水)的关系更为密切。冬奥会场地的2月份气温在-14~2℃之间,月平均降水量仅0.2mm·d-1,积雪日数不足,预计难以形成足够深度的雪,且未来气温上升,达到0.8℃·(10a)-1,降水、积雪深度和积雪日数均呈下降趋势,可能60%~95%的赛事用雪将来自人造雪,以应对可能的积雪不足。  相似文献   

11.
最大冻结深度是季节冻土的重要指标,预测第三极地区未来最大冻结深度的变化,对于理解该区域的环境变化,指导生态保护、农牧业生产、工程建设等都具有重要意义。本研究利用基准时期(2000s)良好训练的支持向量回归模型,使用集合模拟策略,预测了2050s和2090s第三极地区在4种SSP情景下最大冻结深度的变化。结果表明,在可持续路径(SSP126)、中间路径(SSP245)、区域竞争路径(SSP370)和化石燃料为主发展路径(SSP585)情景下,不包括多年冻土退化为季节冻土的区域,相对于基准期,季节冻土的最大冻结深度到21世纪末将分别减小10.41 cm(11.69%)、24.00 cm(26.95%)、37.71 cm(42.34%)和47.71 cm(53.57%)。最大冻结深度的减小具有海拔依赖性,随着海拔的升高,最大冻结深度减小的速率变大,但是海拔超过5 000 m后,最大冻结深度减小速率逐渐减小,这与升温的海拔依赖性较为一致。最大冻结深度的变化也与生物群区有关,在4种SSP情景下,山地草地和灌木区的最大冻结深度减小速率最快,到21世纪末平均每十年分别减小1.80 cm、3.77 c...  相似文献   

12.
基于2000 - 2014年新疆伊犁地区不同海拔区域观测的冻融期内的冻土、 积雪和气象数据, 应用相关性分析和回归分析方法, 分析该地区季节冻土沿海拔的分布规律, 以及气温、 积雪对季节冻土特征的影响。结果表明: 伊犁地区表层土壤存在着每年11月份开始结冻, 于次年4月份完全融化的周期性变化。每个周期内土壤冻结时长随海拔以4 d·(100m)-1的趋势增加, 土壤最大冻结深度随海拔以3.9 cm·(100m)-1的趋势增加。土壤冻结时长与冻结期的平均气温具有显著负相关关系, 相关系数为-0.98(P<0.05)。土壤冻结日数与积雪覆盖历时呈正相关关系, 土壤的最大冻结深度与最大雪深呈负相关关系。随着海拔升高, 温度递减, 导致伊犁地区土壤最大冻结深度和土壤冻结日数整体呈现增加趋势。但在海拔相对较高的地区, 由于相对较厚积雪的影响, 出现土壤最大冻结深度随海拔升高而减小的反常现象。研究结果可为新疆伊犁地区季节冻土的分布对气候变化的响应研究提供支持, 帮助研究区域生态规划和水资源管理, 为农业发展制定适应气候变化对策。  相似文献   

13.
古尔班通古特沙漠是中国唯一冬季存在长期积雪的沙漠,在此特殊地理环境下,沙漠及周边区域冬季雪深和边界层高度的时空变化特征和相互关系尚未明确。本文利用1980—2019年SMMR(Scanning Multichannel Microwave Radiometer)、SSM/I(Special Sensor Microwave/Imager)、SSMI/S(Special Sensor Microwave Imager/Sounder)被动微波遥感雪深数据、古尔班通古特沙漠腹地雪深观测数据和ERA5再分析资料(the Fifth Generation ECMWF Reanalysis)边界层高度数据,分析了沙漠及周边区域冬季雪深和边界层高度的时空变化特征与相互关系。结果表明:古尔班通古特沙漠及周边区域冬季雪深年均值为8.45 cm,整体呈现东北部和南部积雪较深,其他区域积雪较浅并呈现出由沙漠中心区域向四周逐渐减少的特点,雪深在古尔班通古特沙漠及其东北、南边的邻近区域呈升高趋势,剩余地区呈下降趋势。古尔班通古特沙漠及周边区域冬季边界层高度年均值为105.54 m,呈现东南部和西北部高,中心沙漠区域、东北部、西南部较低的特点,边界层高度在沙漠及周边区域升高而其他区域降低。古尔班通古特沙漠的冬季雪深和大气边界层高度时空变化整体呈负相关,其中93.17%以上的沙漠区域呈负相关,平均相关系数为-0.32,最大相关系数绝对值为-0.58,空间相关系数为-0.42(P<0.05)。  相似文献   

14.
吉林省季节冻土冻结深度变化及对气候的响应   总被引:2,自引:2,他引:0  
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深,6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作用逐渐变强;当积雪深度达到20 cm时,保温作用显著,冻土冻结深度变浅。  相似文献   

15.
40余年来中国地区季节性积雪的空间分布及年际变化特征   总被引:11,自引:8,他引:11  
王澄海  王芝兰  崔洋 《冰川冻土》2009,31(2):301-310
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势.  相似文献   

16.
《冰川冻土》2021,(新疆积雪)
利用新疆89个地面站逐日积雪深度观测资料,研究探讨了1961—2017年新疆区域积雪期、积雪初日、积雪终日的时空变化规律,分析了北疆和天山山区积雪期的年代际和周期变化特征及其与气温、降水的关系。结果表明:新疆各地积雪期、积雪初日和终日存在明显的差异,积雪期以天山为界北多南少;从空间分布看,天山山区和新疆北部阿勒泰、塔城和伊犁河谷的大部地区是新疆积雪最丰富的地区,也是积雪期相对较长的区域。近57年来,北疆和天山山区78%气象站积雪期呈减少趋势,其中塔城地区和阿勒泰东部以及中天山一带的部分地区减少显著;67%气象站积雪初日推迟,显著推迟区域与积雪期显著减少的区域基本一致;积雪终日变化趋势不明显。北疆和天山山区积雪期存在2~3a的短周期、14~15a的长周期;积雪初日分别以12a、15a长周期振荡为主,但3~5a短周期振荡出现的时段有所差异,两个区域积雪终日周期信号均较弱。北疆和天山山区积雪期、积雪初日和终日受气温的影响大于降水,其中积雪初日、终日出现的早晚与其所处季节的平均气温显著相关。  相似文献   

17.
青藏高原积雪对高亚洲地区水和能量循环起着重要的反馈和调节作用,其变化影响着融雪性河流流量,对下游水资源和经济活动具有重要影响。中分辨率成像光谱仪(MODIS)具有较高的时空分辨率,被广泛应用于积雪遥感动态监测,然而光学遥感积雪受云层影响严重,且青藏高原地区水汽分布不均,局地对流活跃,积雪的赋存时间变化快,这给高原地区逐日积雪监测及其气候学制图带来挑战。在考虑青藏高原地形和积雪分布特征情况下,结合现有的云覆盖下积雪判别算法,采用8个不同方法的组合,逐步实现MODIS逐日无云积雪算法。选取2009年10月1日-2011年4月30日两个积雪季为研究期,并采用145个地面台站观测雪深数据对去云算法各步骤过程开展精度验证,结果表明:当积雪深度>3 cm时,逐日无云积雪产品总分类精度达到96.6%,积雪分类精度达83%,积雪判对概率(召回率)达到89.0%,算法可实现青藏高原地区逐日无云积雪动态监测和积雪覆盖气候学数据重建,对高亚洲地区的水、生态和灾害等全球环境变化影响研究具有重要的意义。  相似文献   

18.
利用位于天山西部的中国科学院天山积雪与雪崩研究站1967-2000年近33 a来的观测记录, 检验了天山西部中山带季节性积雪、冬季降水、冬季平均气温的变化趋势. 结果表明: 季节性积雪的长期变化呈增加趋势, 近33 a来年平均增加1.43%; 冬季气温和降水的变化趋势也是增加的, 其中冬季降水每年平均增加0.12%, 而冬季气温近30 a来升高了0.8 ℃. 对气温时间序列的一次线性倾向估计的倾向值为0.02, 气温变化表现出稳定的升温趋势, 最大熵谱分析表明气温的变化存在2.1 a、 3.6 a、 10.7 a的变化周期. 对多年气温季节的变化研究表明, 升温的季节主要是冬季, 而夏季升温不明显;最大熵谱分析表明降水变化存在2.1 a、 6.4 a、 10.7 a的周期变化, 降水量的变化没有表现出很强的趋势性特点;逐年最大积雪深度在波动中成逐年增加的趋势, 积雪日数和最大积雪深度之间密切相关, 33 a来的积雪日数是增加的. 通过对相关因子和影响因子分析表明, 季节性积雪与冬季气温之间存在着弱的负相关关系, 与冬季降水呈显著的正相关关系.  相似文献   

19.
新疆积雪覆盖时空变异分析   总被引:1,自引:0,他引:1  
利用2000-2010年MODIS积雪覆盖产品数据MOD10A2,提取了新疆近10年来积雪覆盖变化信息,并结合地面站点数据,对遥感积雪覆盖估算的精度进行了验证;分析了新疆积雪覆盖的年际、年内变化及南北疆积雪覆盖变化的差异;结合数字高程模型,分析不同高程带下积雪覆盖的时空变化规律,揭示高程因素对新疆积雪时空变化的影响。结果表明:MOD10A2提取的积雪信息能够反映新疆的积雪变化情况,总体精度达92.3%;近10年来,全疆年积雪覆盖率最大值范围为34.0%~51.7%,最小值范围为1.7%~2.6%;积雪覆盖比率的变化在南北疆差异明显,南疆区域积雪覆盖整体不高,年内积雪覆盖比率变化幅度低于50%;而北疆区域由于受复杂地形和气候带的影响,积雪覆盖比率大,年内的变化幅度强,除2008年均达到80%以上;在季节变化上,春季和秋季的积雪覆盖均值波动较为明显,夏季和冬季的积雪覆盖均值则波动较小,这一规律在北疆地区表现更为显著;积雪覆盖的时空分布与变化受高程的影响,在海拔4 000 m以下区域,夏季积雪覆盖比率低,冬季积雪覆盖比率高,而6 000 m以上海拔区域则表现出完全相反的特点,即夏季积雪覆盖比率高,冬季积雪覆盖比率低。  相似文献   

20.
北疆地区积雪时空变化的影响因素分析   总被引:2,自引:0,他引:2  
利用新疆北部地区2000-2007年观测的积雪资料分析北疆地区积雪开始时间、积雪结束时间、积雪日数、年最大雪深、积雪期平均雪深和年平均雪深随海拔、经纬度、坡度、坡向和植被的变化. 结果表明:随着海拔增加,积雪各变量变化明显,温度在海拔变化中起着关键作用;植被对积雪各变量有影响,但影响程度不明显. 在北疆区域范围内,纬度变化及温度差异不大,对积雪各变量影响很小;经度对积雪各变量的影响是由空间差异造成的;坡度对积雪变量的影响主要通过空间分布及坡度产生的阴影造成,进而影响太阳直射;坡向对积雪各变量的影响主要由水汽运动方向和太阳光照造成. 因此,在北疆区域内,对积雪各变量的影响程度为海拔>坡向>坡度>植被>纬度>经度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号