首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We present calculations of the dynamics of highly ionized gas (HIG) clouds that are confined by external pressure, and are photoionized by AGN continuum. We focus on the gas that is seen, in absorption, in the X-ray spectrum of many AGN and show that such gas can reach hydrostatic equilibrium under various conditions. The principal conclusion is that the clouds can be accelerated to high velocities by the central X-ray source. The dynamical problem can be reduced to the calculation of a single parameter, the average force multiplier, 〈 M 〉. The typical value of 〈 M 〉 is ∼10 suggesting that radiation pressure acceleration by X-rays is efficient for L / L Edd≳0.1 . The terminal velocity scales with the escape velocity at the base of the flow and can exceed it by a large factor. The typical velocity for a HIG flow that originates at R =1017 cm in a source with L x =1044 erg s−1 is ∼1000 km s−1, i.e. similar to the velocities observed in several X-ray and UV absorption systems.
Highly ionized AGN clouds are driven mainly by bound–free absorption, and bound–bound processes are less important unless the lines are significantly broadened or the column density is very small. Pressure laws that result in constant or outward decreasing ionization parameters are most effective in accelerating the flow.  相似文献   

2.
We present a new general scheme for calculating the structure and dynamics of radiation-pressure-driven photoionized flows. The new method goes one step beyond the Sobolev approximation. It involves a numerical solution of the radiative transfer in absorption lines, including the effects of differential expansion and line interactions such as line locking and blanketing. We also present a new scheme for calculating the radiation pressure due to trapped line photons in finite, differentially expanding flows. We compare our results for the radiation pressure force with those obtained using the Sobolev approximation and show the limitations of the latter. In particular, we demonstrate that the Sobolev method gives a poor approximation near discontinuity surfaces and its neglect of line blanketing can lead to erroneous results in high-velocity flows. We combine the newly calculated radiation pressure force with self-consistent photoionization and thermal calculations to study the dynamics and spectral features of broad absorption-line flows and highly ionized gas flows in active galactic nuclei (AGN). A comparison with Sobolev-type calculations shows that the latter overestimates the terminal velocity of the flow and, conversely, underestimates its opacity. We also show that line locking on broad emission lines can have a significant effect on the dynamics and spectral features of AGN flows.  相似文献   

3.
4.
In this paper, we extend the study of instabilities in flows driven by the radiation pressure of an ionizing continuum to flows that are not plane parallel. It is well known that the plane-parallel instability leads eventually to the formation of continuum-driven shocks backed by a sonic transition. If these structures are thin, we find that they are unstable to a corrugation mode, and evolve to form sharp-peaked triangular profiles. Once this has occurred, the thin-shock approximation is no longer valid.
We study the further development of the shocks by numerical hydrodynamic simulations. The flow tends to break up into numerous discrete bow-shaped components. The speed of these components through the upstream material is almost constant. As a result, the maximal velocity of radiatively driven shocks through the upstream gas may be determined by instabilities rather than by other physical effects. Interactions between gas in the wings of neighbouring bowshocks can, however, form subsequent generations of bowshocks that are faster and more acute than their predecessors.
One likely location where continuum-driven shocks may occur is in the broad-line regions of active nuclei. We discuss the application of our results to such flows.  相似文献   

5.
Continuum radiation from active galactic nuclei   总被引:1,自引:0,他引:1  
Summary Active galactic nuclei (AGN) can be divided into two broad classes, where the emitted continuum power is dominated either by thermal emission (radio-quiet AGN), or by nonthermal emission (blazars). Emission in the 0.01–1 m range is the primary contributor to the bolometric luminosity and is probably produced through thermal emission from an accretion disk, modified by electron scattering and general relativistic effects. The 1–1000 m continuum, the second most important contributor to the power, is generally dominated by thermal emission from dust with a range of temperatures from 40 K to 1000–2000 K. The dust is probably reemitting 0.01–0.3 m continuum emission, previously absorbed in an obscuring cone (or torus) or an extended disk. The 1–10 keV X-ray emission is rapidly variable and originates in a small region. This emission may be produced through Compton scattering by hot thermal electrons surrounding an accretion disk, although the observations are far from being definitive. The weak radio emission, which is due to the nonthermal synchrotron process, is usually elongated in the shape of jets and lobes (a core may be present too), and is morphologically distinct from the radio emission of starburst galaxies.In the blazar class, the radio through ultraviolet emission is decidedly non-thermal, and apparently is produced through the synchrotron process in an inhomogeneous plasma. The plasma probably is moving outward at relativistic velocities within a jet in which the Lorentz factor of bulk motion (typically 2–6) increases outward. This is inferred from observations indicating that the opening angle becomes progressively larger from the radio to the optical to the X-ray emitting regions. Shocks propagating along the jet may be responsible for much of the flux variability. In sources where the X-ray continuum is not a continuation of the optical-ultraviolet synchrotron emission, some objects show variability consistent with Compton scattering by relativistic electron in a large region (in BL Lacertae), while other objects produce their X-ray emission in a compact region, possibly suggesting pair production.When orientation effects are included, all AGN may be decomposed into a radio-quiet AGN, a blazar, or a combination of the two. Radio-quiet AGN appear to have an obscuring cone or torus containing the broad emission line clouds and an ionizing source. Most likely, the (non-relativistic) directional effects of this obscuring region give rise to the difference between Seyfert 1 and 2 galaxies or narrow and broad line radio galaxies. For different orientations of the nonthermal jet, relativistic Doppler boosting can produce BL Lacertae objects or FR I radio galaxies, or at higher jet luminosities, flat-spectrum high-polarization quasars or FR II radio galaxies.  相似文献   

6.
7.
Based on the Königl's inhomogeneous jet model, we estimate the jet parameters, such as bulk Lorentz factor Γ, viewing angle θ and electron number density n e from radio very long-baseline interferometry and X-ray data for a sample of active galactic nuclei (AGNs) assuming that the X-rays are from the jet rather than the intracluster gas. The bulk kinetic power of jets is then calculated using the derived jet parameters. We find a strong correlation between the total luminosity of broad emission lines and the bulk kinetic power of the jets. This result supports the scenario that the accretion process is tightly linked with the radio jets, though how the disc and jet are coupled is not revealed by present correlation analysis. Moreover, we find a significant correlation between the bulk kinetic power and radio extended luminosity. This implies that the emission from the radio lobes is closely related with the energy flux transported through jets from the central part of AGNs.  相似文献   

8.
Homan & Lister have recently published circular polarization (CP) detections for 34 objects in the MOJAVE sample – a set of bright, compact active galactic nuclei (AGN) being monitored by the Very Long Baseline Array at 15 GHz. We report the detection of 15-GHz parsec-scale CP in two more AGN (3C 345 and 2231+114), and confirm the MOJAVE detection of CP in 1633+382. It is generally believed that the most likely mechanism for the generation of this CP is Faraday conversion of linear polarization (LP) to CP. A helical jet magnetic field ( B field) geometry can facilitate this process – linearly polarized emission from the far side of the jet is converted to CP as it passes through the magnetized plasma at the front side of the jet on its way towards the observer. In this case, the sign of the generated CP is essentially determined by the pitch angle and helicity of the helical B field. We have determined the pitch-angle regimes and helicities of the helical jet B fields in eight AGN for which parsec-scale CP has been detected, and used them to predict the expected CP signs for these AGN if the CP is generated via conversion in these helical fields. We have obtained the intriguing result that our predictions agree with the observed signs in all eight cases, provided that the longitudinal B field components in the jets correspond to south magnetic poles. This clearly non-random pattern demonstrates that the observed CP in AGN is directly associated with the presence of helical jet B fields. These results suggest that helical B fields are ubiquitous in AGN jets.  相似文献   

9.
We explore the relation between the linear length of radio core and the central black hole mass for a sample of radio-loud active galactic nuclei (AGNs). An empirical relation between the size of the broad line region (BLR) and optical luminosity is used to estimate the size of the BLR. The black hole mass is derived from H β linewidth and the radius of the BLR on the assumption that the clouds in BLRs are orbiting with Keplerian velocities. A significant intrinsic correlation is found between the linear length of the core and the black hole mass, which implies that the jet formation is closely related with the central black hole. We also find a strong correlation between the black hole mass and the core luminosity.  相似文献   

10.
11.
In this paper, we present an evolutionary unification scenario, involving supermassive black holes (SMBHs) and starbursts (SBs) with outflow (OF), that seems capable of explaining most of the observational properties (of at least part) of active galactic nuclei (AGN).
The scenario includes a nuclear/circumnuclear SB closely associated with the AGN where the narrow-line region (NLR), broad-line region (BLR) and broad absorption line (BAL) region are produced in part by the OF process with shells and in compact supernova remnants (cSNRs).
The OF process in BAL quasi-stellar objects (QSOs) with extreme infrared (IR) and Fe  ii emission is studied. In addition, the Fe  ii problem regarding the BLR of AGN is analysed. The correlations between the BAL, IR emission, Fe  ii intensity and the intrinsic properties of the AGN are not clearly understood. We suggest here that the behaviour of the BAL, IR and Fe  ii emission in AGN can be understood within an evolutionary and composite model for AGN.
In our model, strong BAL systems and Fe  ii emission are present (and intense) in young IR objects. Parameters like the BALs, IR emission, Fe  ii /Hβ intensity ratio, Fe  ii equivalent width (EW), broad-line width, [O  iii ]λ5007-Å intensity and width, NLR size, X-ray spectral slope in radio quiet (RQ) AGN plus lobe separation, and lobe to core intensity ratio in radio loud (RL) AGN are proposed to be fundamentally time-dependent variables inside time-scales of the order of 108 yr. Orientation/obscuration effects take the role of a second parameter providing the segregation between Seyfert 1/Seyfert 2 galaxies (Sy1/Sy2) and broad-/narrow-line radio galaxies (BLRG/NLRG).  相似文献   

12.
The cosmological evolution of active galactic nuclei (AGN) is important for understanding the mechanism of accretion on to supermassive black holes and the related evolution of the host galaxy. In this work, we include objects with very low Eddington ratio  (10−3–10−2)  in an evolution scenario, and compare the results with the observed local distribution of black holes. We test several possibilities for the AGN population, considering obscuration and dependence with luminosity, and investigate the role of the Eddington ratio λ and radiative accretion efficiency ε on the shape of the evolved mass function. We find that three distinct populations of AGN can evolve with a wider parameter range than is usually considered, and still be consistent with the local mass function. In general, the black holes in our solutions are spinning rapidly. Taking fixed values for ε and λ neither provides a full knowledge of the evolution mechanism nor is consistent with the existence of low-Eddington-ratio objects.  相似文献   

13.
14.
15.
We discuss the properties of X-ray-selected 'red' active galactic nuclei (AGN) from the RIXOS sample. These are Seyfert 1 galaxies and quasars whose optical continua are relatively soft, i.e. with an energy index, αopt > 2. There are 14 objects in the RIXOS sample that satisfy this criterion and they cover a range in redshift from z  = 0.08 to 1.27. Of these, two have characteristics that suggest that the continuum is intrinsically red, i.e. an optical continuum which does not appear to have been significantly reddened by dust or to have contaminating light from the host galaxy. A further three objects show evidence of being absorbed by cold gas and dust with columns of up to ∼ 1022 cm−2. The data are inconclusive on the remaining AGN.  相似文献   

16.
17.
18.
Active galactic nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centres implies that there will be many jet/star interactions, which can mass load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass loading by stellar winds for a broader spectrum of wind mass-loss rates than has previously been considered. Given the observed stellar mass distributions in galactic centres, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses M BH≲ 104 M are rapidly mass loaded and quenched by stellar winds. For  104 M < M BH < 108 M  , the quenching length of highly efficient jets is independent of the jet's mechanical luminosity. Stellar wind mass loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon-dominated composition on scales ≳2 kpc therein even if the jet is initially pair plasma dominated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号