首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear trend analysis of observational data combined with model diagnostics from an atmospheric general circulation model are employed to search for potential mechanisms related to the observed glacier retreat in the tropical Andes between 1950 and 1998. Observational evidence indicates that changes in precipitation amount or cloud cover over the last decades are minor in most regions and are therefore rather unlikely to have caused the observed retreat. The only exception is in southern Peru and western Bolivia where there is a general tendency toward slightly drier conditions. Near-surface temperature on the other hand has increased significantly throughout most of the tropical Andes. The temperature increase varies markedly between the eastern and western Andean slopes with a much larger temperature increase to the west. Simulations with the ECHAM-4 model, forced with observed global sea surface temperatures (SST) realistically reproduce the observed warming trend as well as the spatial trend pattern. Model results further suggest that a significant fraction of the observed warming can be traced to a concurrent rise in SST in the equatorial Pacific and that the markedly different trends in cloud cover to the east and west of the Andes contributed to the weaker warming east of the Andes in the model. The observed increase in relative humidity, derived from CRU 05 data, is also apparent in the model simulations, but on a regional scale the results between model and observations vary significantly. It is argued that changes in temperature and humidity are the primary cause for the observed glacier retreat during the 2nd half of the 20th century in the tropical Andes.  相似文献   

2.
This study assesses the sensitivity of the fully coupled NCAR-DOE PCM to three different representations of present-day land cover, based on IPCC SRES land cover information. We conclude that there is significant model sensitivity to current land cover characterization, with an observed average global temperature range of 0.21 K between the simulations. Much larger contrasts (up to 5 K) are found on the regional scale; however, these changes are largely offsetting on the global scale. These results show that significant biases can be introduced when outside data sources are used to conduct anthropogenic land cover change experiments in GCMs that have been calibrated to their own representation of present-day land cover. We conclude that hybrid systems that combine the natural vegetation from the native GCM datasets combined with human land cover information from other sources are best for simulating such impacts. We also performed a prehuman simulation, which had a 0.39 K ~higher average global temperature and, perhaps of greater importance, temperature changes regionally of about 2 K. In this study, the larger regional changes coincide with large-scale agricultural areas. The initial cooling from energy balance changes appear to create feedbacks that intensify mid-latitude circulation features and weaken the summer monsoon circulation over Asia, leading to further cooling. From these results, we conclude that land cover change plays a significant role in anthropogenically forced climate change. Because these changes coincide with regions of the highest human population this climate impact could have a disproportionate impact on human systems. Therefore, it is important that land cover change be included in past and future climate change simulations.  相似文献   

3.
全球山地冰冻圈变化、影响与适应   总被引:1,自引:0,他引:1  
冰冻圈是高山地区不可或缺的重要组成部分,居住着全球约10%的人口。近几十年来,冰冻圈变化对山区和周围地区的自然和人类系统产生了广泛而深远的影响,对海洋也发挥着重要作用。IPCC最新发布的《气候变化中的海洋和冰冻圈特别报告》(SROCC)指出,过去几十年全球高山区气温显著升高,使山地冰冻圈发生了大范围显著退缩。观测到的山地(特别是低海拔山区)积雪期缩短、雪深和积雪覆盖范围减小;冰川物质持续亏损,其中全球最大的冰川负物质平衡出现在南安第斯山、高加索山和欧洲中部,亚洲高山区冰川负物质平衡最小;多年冻土温度升高、厚度减薄,地下冰储量减少;河、湖冰持续时间缩短。随着气候持续变暖,山地冰冻圈在21世纪仍将呈继续退缩状态。到21世纪末,低海拔山区积雪深度和积雪期将减少,冰川物质损失继续增加,多年冻土持续退化。冰冻圈变化已经或将改变山地灾害发生频率和强度,并对水资源、生态系统和经济社会系统产生重要影响。应对山地冰冻圈变化应从管理和优化利用冰冻圈资源、加强冰冻圈变化灾害风险的有效治理、增强国际合作及公约制定等适应策略着手开展,增强适应能力,从而有益于推动山地生态系统和经济社会系统可持续发展。  相似文献   

4.
The Andes Cordillera acts as regional ??Water Towers?? for several countries and encompasses a wide range of ecosystems and climates. Several hydroclimatic changes have been described for portions of the Andes during recent years, including glacier retreat, negative precipitation trends, an elevation rise in the 0° isotherm, and changes in regional streamflow regimes. The Temperate-Mediterranean transition (TMT) zone of the Andes (35.5°?C39.5°S) is particularly at risk to climate change because it is a biodiversity hotspot with heavy human population pressure on water resources. In this paper we utilize a new tree-ring network of Austrocedrus chilensis to reconstruct past variations in regional moisture in the TMT of the Andes by means of the Palmer Drought Severity Index (PDSI). The reconstruction covers the past 657?years and captures interannual to decadal scales of variability in late spring?Cearly summer PDSI. These changes are related to the north?Csouth oscillations in moisture conditions between the Mediterranean and Temperate climates of the Andes as a consequence of the latitudinal position of the storm tracks forced by large-scale circulation modes. Kernel estimation of occurrence rates reveals an unprecedented increment of severe and extreme drought events during the last century in the context of the previous six centuries. Moisture conditions in our study region are linked to tropical and high-latitude ocean-atmospheric forcing, with PDSI positively related to Ni?o-3.4 SST during spring and strongly negatively correlated with the Antarctic Oscillation (AAO) during summer. Geopotential anomaly maps at 500-hPa show that extreme dry years are tightly associated with negative height anomalies in the Ross?CAmundsen Seas, in concordance with the strong negative relationship between PDSI and AAO. The twentieth century increase in extreme drought events in the TMT may not be related to ENSO but to the positive AAO trend during late-spring and summer resulting from a gradual poleward shift of the mid-latitude storm tracks. This first PDSI reconstruction for South America demonstrates the highly significant hindcast skill of A. chilensis as an aridity proxy.  相似文献   

5.
Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.  相似文献   

6.
Mountain ranges are known to have a first-order control on mid-latitude climate, but previous studies have shown that the Andes have little effect on the large-scale circulation over South America. We use a limited-domain general circulation model (RegCM3) to evaluate the effect of the Andes on regional-scale atmospheric dynamics and precipitation. We present experiments in which Andean heights are specified at 250 m, and 25, 50, 75, and 100% of their modern values. Our experiments indicate that the Andes have a significant influence on moisture transport between the Amazon Basin and the central Andes, deep convective processes, and precipitation over much of South America through mechanical forcing of the South American low-level jet (LLJ) and topographic blocking of westerly flow from the Pacific Ocean. When the Andes are absent, the LLJ is absent and moisture transport over the central Andes is mainly northeastward. As a result, deep convection is suppressed and precipitation is low along the Andes. Above 50% of the modern elevation, a southward flowing LLJ develops along the eastern Andean flanks and transports moisture from the tropics to the subtropics. Moisture drawn from the Amazon Basin provides the latent energy required to drive convection and precipitation along the Andean front. Large northerly moisture flux and reduced low-level convergence over the Amazon Basin leads to a reduction in precipitation over much of the basin. Our model results are largely consistent with proxy evidence of Andean climate change, and have implications for the timing and rate of Andean surface uplift.  相似文献   

7.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

8.
Mountain ecosystems have been projected to experience faster rates of warming than surrounding lowlands. These changes in climatic conditions could have significant impacts on high-altitude Andean environments, affecting the quality and magnitude of their economic and environmental services. Even though long-term data in these regions are limited, it is important to identify any discernible long-term trends in local climatic conditions. Time series of several variables were analyzed to detect statistically significant long-term linear trends that occurred over recent years in a páramo ecosystem of the Colombian Central Andes. Records included cloud characteristics, sunshine, rainfall, minimum and maximum temperatures, diurnal temperature range, and relative humidity. Conditions of atmospheric stability were also explored. Total sunshine exhibited decreasing trends ranging from ?3.7 to ?8.5% per decade at altitudes around the pluviometric optimum. The strongest changes in sunshine occurred during the December-January-February season. Mean relative humidity observed at altitudes around and below this threshold showed increasing trends of +0.6 to +0.7% per decade. Annual rainfall and mean relative humidity above the optimum showed decreasing trends ranging from ?7 to ?11% per decade and from ?1.5 to ?3.6% per decade, respectively. Minimum temperatures on the coldest days and maximum temperatures on the warmest days exhibited increasing trends at all altitudes ranging from +0.1 to +0.6, and from +0.2 to +1.1°C per decade, respectively. Increases in minimum and maximum temperatures at higher altitudes were significantly greater than those observed in average at lower altitudes. The strongest changes in minimum temperatures, particularly, occurred during the December–January–February and June–July–August dry seasons. All these changes suggest that atmospheric conditions in the area are shifting from statically unstable conditions to conditionally unstable or statically stable conditions. Observed historical trends indicate that climate impacts and other human activities have stressed these unique and fragile environments.  相似文献   

9.
Earth’s life-support systems are in rapid decline, yet we have few metrics or indicators with which to track these changes. The world’s governments are calling for biodiversity and ecosystem-service monitoring to guide and evaluate international conservation policy as well as to incorporate natural capital into their national accounts. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has been tasked with setting up this monitoring system. Here we explore the immediate feasibility of creating a global ecosystem-service monitoring platform under the GEO BON framework through combining data from national statistics, global vegetation models, and production function models. We found that nine ecosystem services could be annually reported at a national scale in the short term: carbon sequestration, water supply for hydropower, and non-fisheries marine products, crop, livestock, game meat, fisheries, mariculture, and timber production. Reported changes in service delivery over time reflected ecological shocks (e.g., droughts and disease outbreaks), highlighting the immediate utility of this monitoring system. Our work also identified three opportunities for creating a more comprehensive monitoring system. First, investing in input data for ecological process models (e.g., global land-use maps) would allow many more regulating services to be monitored. Currently, only 1 of 9 services that can be reported is a regulating service. Second, household surveys and censuses could help evaluate how nature affects people and provides non-monetary benefits. Finally, to forecast the sustainability of service delivery, research efforts could focus on calculating the total remaining biophysical stocks of provisioning services. Regardless, we demonstrated that a preliminary ecosystem-service monitoring platform is immediately feasible. With sufficient international investment, the platform could evolve further into a much-needed system to track changes in our planet's life-support systems.  相似文献   

10.
Long-lasting community-based resource management systems have offered scholars important lessons in the study of human-environment relations. The examination of such systems has suffered from a sampling bias, however, in that it has focused disproportionately on successful systems. There are fewer studies that have explored the deterioration of such systems, particularly with an interdisciplinary approach. This shortfall is problematic given the increasing social and biophysical disturbances that communities are facing as they become more integrated into, and affected by, larger-scale processes.This study addresses this gap by analyzing the modern condition of a long-lasting community-based irrigation system known as the acequias in northern New Mexico. Using a mix of interview, survey, remote sensing, and census data, I examine the extent to which important indicators for the acequias have shifted in the last several decades and explore reasons for these changes. A mix of statistical and qualitative comparative techniques is used to conduct the analysis.By examining longitudinal data we find that the acequias are producing less than they have in the past and have mostly lost their common-property-based livestock pasturing system. While some of these changes can be attributed to similar declines in water availability, much of the change results from social drivers including demographic changes, regional-to-global market forces, and public policies. Overall the shift of the acequias to their current state is a result of their integration into a much larger-scale set of social and economic forces than they have experienced in the past. This shift will be very difficult to reverse, meaning the acequia farmers must adapt to the current condition. It is likely that these themes are common across many community-based resource management systems in many locations. In the future, further progress should be made in synthetically comparing such cases in ways that have already been done for long-lasting successful systems.  相似文献   

11.
Land use and land cover interact with atmospheric conditions to determine current climate conditions, as well, as the impact of climate change and environmental variability on ecological systems. Such interactions are ubiquitous, yet changes in LULC are generally made without regard to their biophysical implications. This review considers the potential for LULC to compound, confound, or even contradict changes expected from climate change alone. These properties give LULC the potential to be used as powerful tools capable of modifying local climate and contributing significantly to the net impact of climate change. Management practices based modifications of LULC patterns and processes could be applied strategically to increase the resilience of vulnerable ecological systems and facilitate climate adaptation. These interventions build on the traditional competencies of land management and land protection organizations and suggest that these institutions have a central role in determining the ecological impact of climate change and the development of strategies for adaptation. The practical limits to the use of LULC-based tools also suggest important inflection points between manageable and dangerous levels of climate change.  相似文献   

12.
Like all social institutions, governance systems that address human–environment relations – commonly know as environmental or resource regimes – are dynamic. Although analysts have examined institutional change from a variety of perspectives, a particularly puzzling feature of institutional dynamics arises from the fact that some regimes linger on relatively unchanged even after they have become ineffective, while others experience state changes or even collapse in the wake of seemingly modest trigger events. This article employs the framework developed to study resilience, vulnerability, and adaptation in socio-ecological systems (the SES framework) in an effort to illuminate the conditions leading to state changes in environmental and resource regimes. Following a discussion of several conceptual issues, it examines institutional stresses, stress management mechanisms, and the changes that occur when interactive and cumulative stresses overwhelm these mechanisms. An important conclusion concerns the desirability of thinking systematically about institutional reform in a timely manner, in order to be prepared for brief windows of opportunity to make planned changes in environmental regimes when state changes occur.  相似文献   

13.
Using China as a case study, a methodology is presented to estimate the changes in yields and costs of present and future water production systems under climate change scenarios. Yield is important to consider because it measures the actual supply available from a river basin. Costs are incurred in enhancing the natural yield of river basins by the construction and operation of reservoirs and ground water pumping systems. The interaction of ground and surface waters within a river basin and instream flow maintenance are also modeled. The water demands considered are domestic, irrigation, and instream flow needs. We found that under climate change the maximum yields of some basins in China may increase or decrease, depending upon location, and that in some basins it may cost significantly more or it may not be possible to meet the demands. While our results for China could be improved with more hydrologic and economic data, we believe that the cost curves developed have suitable accuracy for initial analysis of water supply costs in Integrated Assessment Models.  相似文献   

14.
Available observations suggest that some mountain regions are experiencing seasonal warming rates that are greater than the global land average. There is also evidence from observational and modeling studies for an elevation-dependent climate response within some mountain regions. Our understanding of climate change in mountains, however, remains challenging owing to inadequacies in observations and models. In fact, it is still uncertain whether mountainous regions generally are warming at a different rate than the rest of the global land surface, or whether elevation-based sensitivities in warming rates are prevalent within mountains. We review studies of four high mountain regions – the Swiss Alps, the Colorado Rocky Mountains, the Tibetan Plateau/Himalayas, and the Tropical Andes – to examine questions related to the sensitivity of climate change to surface elevation. We explore processes that could lead to enhanced warming within mountain regions and possible mechanisms that can produce altitudinal gradients in warming rates on different time scales. A conclusive understanding of these responses will continue to elude us in the absence of a more comprehensive network of climate monitoring in mountains.  相似文献   

15.
Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint Implementation (JI)). This study analyzes which of those options is optimal for transportation fuels and looks for the key variables that influence the result. In two case studies (Mozambique and Brazil), the two trading systems are compared for the amount of credits generated, land-use and associated costs. We found costs of 17–30 euro per ton of carbon for the Brazilian case and economic benefits of 11 to 60 euros per ton of carbon avoided in the Mozambique case. The impact of carbon changes related to direct land-use changes was found to be very significant (both positive and negative) and can currently only be included in emission credit trading, which can largely influence the results. In order to avoid indirect land-use changes (leakage) and consequent GHG emissions, it is crucial that bioenergy crop production is done in balance with improvements of management of agriculture and livestock management. Whatever trading option is economically most attractive depends mainly on the emission baseline in the exporting (emission credit trading) or importing (physical trading) country since both bio- and fossil fuel prices are world market prices in large scale trading systems where transportation costs are low. Physical trading could be preferential since besides the GHG reduction one could also benefit from the energy. It could also generate considerable income sources for exporting countries. This study could contribute to the development of a methodology to deal with bio fuels for transport, in Emission Trading (ET), CDM and the certification of traded bio fuels.  相似文献   

16.
A new set of tree-ring records from the Andes of northern Patagonia, Argentina (41° S) was used to evaluate recent (i.e., last 250 years) regional trends in tree growth at upper treeline. Fifteen tree-ring chronologies from 1200 to 1750 m elevation were developed for Nothofagus pumilio, the dominant subalpine species. Samples were collected along three elevational transects located along the steep west-to-east precipitation gradient from the main Cordillera (mean annual precipitation >4000 mm) to an eastern outlier of the Andes (mean annual precipitation >2000 mm). Ring-width variation in higher elevation tree-ring records from the main Cordillera is mainly related to changes in temperature and precipitation during spring and summer. However, the response to climatic variation is also influenced by local site factors of elevation and exposure. Based on the relationships between Nothofagus growth and climate, we reconstructed changes in snow cover duration in late spring and variations in mean annual temperature since A.D. 1750. Abrupt interannual changes in the mean annual temperature reconstruction are associated with strong to very strong El Niño-Southern Oscillation events. At upper treeline, tree growth since 1977 has been anomalously high. A sharp rise in global average tropospheric temperatures has been recorded since the mid-1970s in response to an enhanced tropical hydrologic cycle due to an increase in temperature of the tropical Pacific. Temperatures in northern Patagonia have been anomalously high throughout the 1980s, which is consistent with positive temperature anomalies in the tropical Pacific and along the western coast of the Americas at c.a. 40° S latitude. Our 250-year temperature reconstruction indicates that although the persistently high temperatures of the 1980s are uncommon during this period, they are not unprecedented. Tropical climatic episodes similar to that observed during the 1980s may have occurred in the recent past under pre-industrial carbon dioxide levels.  相似文献   

17.
Regional droughts in southern South America   总被引:1,自引:1,他引:0  
From a regional inventory of monthly droughts, which was evaluated in six regions of southern South America, the seasonal occurrence of the phenomenon and its persistence together with the duration of monthly and annual sequences, extreme events, and other statistical estimates of the proposed index have been studied. In a primary analysis, it is possible to observe that regions present different behaviors regarding the duration of dry sequences, with more persistence in the Argentinean continental region. Temporal behaviors of the annual indexes have also been analyzed, in the attempt to determine any aspects of the impact of global warming. Through this analysis, the presence of long favorable tendencies regarding precipitations or the inverse of droughts occurrence are confirmed for the eastern Andes Mountains in Argentina (ARG) with its five sub-regions (Northwest Argentina-NWA, Northeast Argentina-NEA, Humid Pampa-HP, West-Centre Provinces-WC and Patagonia-PAT, and the inverse over the central region of Chile (CHI). Other climatic great-scale changes are interdecadales variations and variances explained according to ENSO.  相似文献   

18.
Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 106 m3 s?1) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes.  相似文献   

19.
This paper aims to identify those regions within the South American continent where the Regional Climate Models (RCMs) have the potential to add value (PAV) compared to their coarser-resolution global forcing. For this, we used a spatial-scale filtering method based on the wavelet theory to distinguish the regional climatic signal present in atmospheric surface fields from observed data (CPC and TRMM) and 6 RCM simulations belonging to the CORDEX Project. The wavelet used for filtering was Haar wavelet, but a comparative analysis with Daubechies 4 wavelet indicated that meteorological fields or regional indices were not very sensitive to the wavelet selected. Once the longer wavelengths were filtered, we focused on analyzing the spatial variability of extreme rainfall and the spatiotemporal variability of maximum and minimum surface air temperature on a daily basis. The results obtained suggest essential differences in the spatial distribution of the small-scale signal of extreme precipitation between TRMM and regional models, together with a large dispersion between models. While TRMM and CPC register a large signal throughout the continent, the RCMs place it over the Andes Cordillera and some over tropical South America. PAV signal for surface air temperature was found over the Andes Cordillera and the Brazilian Highlands, which are regions characterized by complex topography, and also on the coasts of the continent. The signal came specially from the small-scale stationary component. The transient part is much smaller than the stationary one, except over la Plata Basin where they are of the same order of magnitude. Also, the RCMs and CPC showed a large spread between them in representing this transient variability. The results confirm that RCMs have the potential to add value in the representation of extreme precipitation and the mean surface temperature in South America. However, this condition is not applicable throughout the whole continent but is particularly relevant in those terrestrial regions where the surface forcing is strong, such as the Andes Cordillera or the coasts of the continent.  相似文献   

20.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号