首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大型岩质滑坡地震变形破坏过程物理试验与数值模拟研究   总被引:1,自引:0,他引:1  
以汶川地震触发的大光包岩质滑坡为例,结合野外现场调查,以其地质结果为背景,建立起破坏前的物理模型和三维数值模型,利用振动试验台和数值计算方法对滑坡变形破坏过程进行了研究。物理试验与数值模拟方法相互验证,取得了较为一致的结果。研究结果表明: 该滑坡的破坏模式为坡体顶部与中部拉张贯穿破坏中部沿层面滑移前缘剪切破坏,中部拉裂缝与主滑面首先形成滑动边界,前缘首先滑出; 滑坡变形过程中的加速度与速度响应研究表明其放大效应明显。同时,通过对比基岩与滑带加速度与速度放大系数,显示了结构面对斜坡变形破坏过程的控制作用。  相似文献   

2.
3.
The stability of rock slopes under dynamic loading in mining and civil engineering depends upon the slope geometry, mechanical properties of rock mass and discontinuities, and the characteristics of dynamic loads with time. The wedge failure is one of the common forms of slope failures. The authors presented some stability conditions for rock wedges under dynamic loading and they confirmed their validity through the laboratory experimental studies in a previous paper in 2000, which is often quoted by others to validate their softwares, including some commercial software. In this study, the authors investigate the sliding responses of rock wedges under dynamic loads rather than the initiation of wedge sliding. First, some laboratory model tests are described. On the basis of these model tests on rock wedges, the theoretical model proposed previously is extended to compute the sliding responses of rock wedges in time domain. The proposed theoretical model is applied to simulate the sliding responses of rock wedge model tests and its validity is discussed. In the final part, the method proposed is applied to actual wedge failures observed in 1995 Dinar earthquake and 2005 Pakistan–Kashmir earthquake, and the results are discussed.  相似文献   

4.
陕西山阳滑坡为典型的陡倾层状斜向岩质斜坡,其破坏模式不同于常见的顺倾层状岩质斜坡溃屈破坏模式,也不同于斜倾层状山体的视向滑移-剪切破坏模式,更不同于陡倾顺层岩质斜坡的倾倒、倾倒-滑移破坏模式,属于视向滑移-溃屈破坏模式。在实地调查的基础上,从斜坡结构特征、结构面组合特征以及剪出口特征分析了滑坡的破坏模式,进而分析了山阳滑坡的视向滑移-溃屈破坏机制;以梁板理论、层状板裂结构岩体弯曲-溃屈破坏的力学模型为基础,结合斜倾层状岩质滑坡的视向滑动机制研究,建立了基于斜坡自重、地下水静水压力、侧向摩阻力以及斜坡岩体厚度变化作用下的陡倾层状斜向岩质斜坡视向滑移-溃屈破坏力学模型,进行力学分析,推导了溃屈段长度条件方程,并以山阳滑坡为例验证了长度条件方程的正确性。  相似文献   

5.
丽香铁路金沙江特大桥位于金沙江虎跳峡镇高地震烈度深切峡谷地段。香格里拉端岸坡地形陡峻,卸荷裂隙发育,岸坡岩体在地震及工程荷载作用下的稳定性直接控制了桥梁选址方案的可行性。在深入分析对岸坡工程地质条件的基础上,基于节理特征分析的Barton模型、岩体结构面强度实验,讨论了岩体结构面强度参数,并在此基础上采用底摩擦实验研究了岸坡在自然和工程荷载作用下的稳定性,进而采用离散单元法计算分析了岸坡岩体在自然、桥基荷载作用下、地震加桥基荷载作用工况条件下的破坏趋势。研究表明,岸坡整体稳定,但在地震和桥梁荷载作用下,岸坡卸荷裂隙进一步发育,对桥基影响较大,应加强卸荷带岩体的工程整治以确保桥基安全。  相似文献   

6.
余飞  陈善雄  余和平 《岩土力学》2005,26(Z2):36-40
提出了利用Lagrangian乘子网格来模拟顺层边坡层间结构面接触行为的方法,并推导了考虑接触约束的Lagrangian控制方程的弱形式及其有限元离散方程。Lagrangian乘子网格容许界面出现较大的切向滑移,较好地解决了接触问题中的高度非线性和响应不平滑性。应用以上方法对沪-蓉-西高速公路某顺层岩质高边坡进行了数值模拟分析,得到了临滑状态下的位移场、应力应变场、结构面上的接触状态、层间滑移距离以及接触摩擦力的分布规律。数值模拟结果表明,顺层岩质边坡的破坏是一个渐进的过程,由最初的层间错动,发展为顺层蠕滑,最后在坡底剪出而破坏;其破坏型式由最初的顺层滑动逐步向溃曲破坏转化。  相似文献   

7.
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×10~4m~3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的"锁固段"失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×10~4m~3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有"高速远程"成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。  相似文献   

8.
汶川地震区东河口滑坡破坏机制FLAC模拟分析   总被引:4,自引:1,他引:3       下载免费PDF全文
以汶川地震触发的东河口滑坡为典型案例,根据野外调查结果建立震前地质模型,将实测的汶川地震波作为动力输入,采用FLAC有限差分法对该滑坡分别进行了静力稳定性分析及动力稳定性分析。计算结果表明:竖向峰值加速度导致了边坡的稳定性系数大幅降低,对边坡的破坏起着不可忽视的作用;另外,竖向峰值加速度引起了边坡后缘大面积的拉张破坏,这正是汶川地震引起西南山区产生大量崩滑甚至岩土体"抛掷"现象的一个重要因素。  相似文献   

9.
Landslides and slope failures are very common phenomena in hilly regions, Southwestern China. These are hazardous because of the accompanying progressive movement of the slope-forming material. To minimize the landslide effects, slope failure analysis and stabilization require in-depth understanding of the process that governs the behavior of the slope. The present paper first briefly describes a three-dimensional numerical brittle creep model for rock. The model accounts for material heterogeneity, through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Then a case study of the Jiweishan rockslide that occurred in China is numerically investigated considering the effect of the mining activity. Numerical simulations visualize the entire process of the Jiweishan rockslide from the fracture initiation, propagation and coalescence. The distribution and evolution of associated stress and deformation field during the slide are also presented. Numerical simulations show that the underground mining excavations have remarkably negative effect on the stability of the rock slope, which is one of the important triggering factors of the rockslide. Moreover, it is possible to take some precautions for the unstable failure of rock mass by monitoring acoustic emission (AE) events or microseismicities since the occurrence of clusters of AE events prior to the final unstable rockslide. The results are of general interest, because they can be applied to the investigation of time-dependent instability in rock masses, to the mitigation of associated rock hazards in rock engineering, and even to a better understanding of the seismic activities in geological and geophysical phenomena occurring in the earth’s crust.  相似文献   

10.
Critical deformations in rock masses are frequently controlled by pre-existing discontinuities. In other cases, for example, Study of discontinuum models provides valuable physical spacing. Study of discontinuum models provides valuable physical insights into rock mass deformation behaviour that are not as apparent from continuum studies. Examples from both continuum analysis and discontinuum modelling by the distinct element methods are discussed. These examples include: in-situ deformation tests on columnar basalt. Development of kink bands in laminated rock. Deformation of jointed rock during fluid injection for energy production. Fracture generation in brittle rock under compression.  相似文献   

11.
以陕西山阳滑坡为例,分析了陡倾层状斜向岩层岩质滑坡的视向滑动特征、滑移-溃屈破坏模式与机制。基于梁板理论、层状板裂结构岩体弯曲-溃屈破坏的力学模型在考虑自重、地下水静水压力作用及斜倾层状山体视向滑动侧向摩阻力作用的影响下,采用岩体结构力学分析的方法建立了相应的力学模型;经过力学分析,推导出基于斜坡自重、地下水静水压力与侧向摩阻力作用下的陡倾层状斜向岩层斜坡溃屈段长度条件方程。为验证条件方程的正确性,以山阳滑坡为例进行了验算,最后得出与实际调查较一致的结果,为防御陡倾层状斜向岩层斜坡产生视向溃屈破坏提供依据。   相似文献   

12.
Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July–August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.  相似文献   

13.
文家沟巨型岩质滑坡高速远程运移特征分析   总被引:1,自引:0,他引:1  
文家沟滑坡是汶川地震诱发的巨型高速远程岩质滑坡,其运移特征尚不明确.在现场调查的基础上,结合遥感解译,进一步深入研究其运移特征.分析得出,滑体自滑源区差异性启动,途经斜坡区铲刮坡表岩土体,随后以滑行、飞行等方式进入沟谷区,沿沟铲刮两岸坡体继续下行,与岸坡发生了5次明显的冲撞,逐步解体碎屑化,于第3次冲撞后开始大规模减速...  相似文献   

14.
A failed slope may not necessarily require a remedial treatment if it can be shown with confidence that the maximum movement of the slide mass will be within tolerable limits, i.e., not cause loss of life or property. A permanent displacement analysis of a landslide for static and seismic conditions is presented using a continuum mechanics approach. Computed values of displacement for static conditions compare favorably with field measurements and computed values of seismic displacements for a postulated earthquake motion appear reasonable. Also, the seismic displacements using the continuum mechanics approach compare favorably with those obtained using the Newmark sliding block procedure for assessing seismically-induced slope deformations.  相似文献   

15.
考虑结构面抗剪强度震动退化效应对分析与评价岩质边坡动力稳定性具有重要意义。基于岩石动力试验获取了多因素影响的结构面强度震动退化系数方程,结合极限平衡理论和动态矢量法原理,以UDEC程序作为计算引擎,采用其内置Fish语言编程实时刷新结构面强度特性参数和捕获任意地震历时时刻边坡地震惯性力,并以最小平均安全系数法求解边坡最终动力稳定性评价指标值,从而提出了一种考虑结构面强度震动退化的边坡动力稳定性系数动态算法。研究表明:结构面强度震动退化系数是取决于岩块间循环剪切次数、循环剪切幅度及相对运动速度响应值的动态变量;将该算法应用于含贯通型平直状结构面边坡动力稳定性算例中,其分析结果表明,动力作用时程内考虑结构面强度震动退化的边坡动力稳定性系数较未考虑该效应时的系数衰减更为明显,即前者计算结果更符合一般性自然规律,亦即验证了该算法的可行性;结构面最小强度震动退化系数随动力激励时程变化近似呈负指数函数形式逐渐衰减,且当结构面初始黏聚力(内摩擦角)越大、而坡角(层面倾角)或动荷载幅值(频率)越小时,地震历时过程中边坡最小动力稳定性系数越大,此时边坡最终动力稳定性相对越强。  相似文献   

16.
We present validations and applications of the numerical Discontinuous Deformation Analysis method (DDA) for different cases of dynamic loading in the context of rock mass deformation. Following a review of 2D and 3D-DDA validations against analytical solutions for single and double face sliding, we present dynamic DDA applications in natural rock slopes and underground openings. Modelling dynamic rock slope deformation is demonstrated using the case of Masada rock slopes, with some new findings on the dynamic deformation of overhanging cliffs in general. Modelling underground deformation is demonstrated using the case of an active open pit mine in Israel developed in a rock mass containing multiple karstic caverns. The DDA method is shown here to be a powerful numerical tool for modelling dynamic rock mass deformation when the interaction between multiple discrete elements dictates the expected global deformation.  相似文献   

17.
A strong earthquake (M J 6.9, M W 6.6–6.7) at about 11 km depth hit the western shore of the Noto Peninsula on Honshu, Japan, at about 00:42 coordinated universal time (9:42 a.m. local time) on 25 March 2007 (the Noto Hanto Earthquake in 2007). The earthquake triggered only 61 landslides, with most traveling short distances. It caused one long run-out landslide in the Nakanoya district of Monzen town, Wajima city, Ishikawa Prefecture, when a portion of a deep-seated landslide transformed into a moderate debris slide down a channel. The rock slide occurred on a south-facing convex-shaped slope on a small spur where earthquake ground shaking likely was strongly amplified by topography. A portion of the rock slide reached a small channel floored by materials containing abundant groundwater. Constant-volume box-shear tests on normally consolidated saturated specimens revealed that the apparent angle of internal friction of the channel-floor material was 33–36° at 10-mm shear displacement and did not show much decrease in effective normal stress during shearing. In situ rock-sliding testing on the exposed channel materials showed a low kinetic-friction angle of about 21°. We suggest that an unsaturated portion of the rock slide slid down the channel, with sliding between the rock-slide mass and the channel floor. Because the slope angle of the travel path nearly equaled the kinetic-friction angle, the unsaturated rock slide mass may have traveled at a moderately slow speed, or it might have decelerated and accelerated. Slow speed is supported by accounts from local residents that suggest movement of debris continued for 3 days after the main shock.  相似文献   

18.
The key question regarding steep rock slopes along rock quarries is their stability because a rock slope failure can have critical results. In this study, the aim is to investigate the areas with potential risk for jointed karstic limestones in a rock quarry. First, to determine rock mass properties, scan-line surveys were performed, and the major orientations of discontinuities were analyzed using stereographic projection. Then, the physicomechanical properties of the slope-forming rock were determined in the laboratory, and geomechanical properties of the rock mass were determined using an empirical failure criterion. Finally, the quarry slope stability was assessed in accordance with numerical modelling. According to the results obtained, the numerical modelling of steep rock slopes can be efficiently evaluated by using finite element method. Beside this, the presence of joints intersecting the main discontinuity sets, the filling materials of discontinuities resulting from weathering of limestone and surface deposits, surcharge load due to mine waste dumped on the slopes and excavation blasting during construction of quarry area play a key role when modelling the steep rock slopes by using finite element method.  相似文献   

19.
Numerical modelling of rock slides is a versatile approach to understand the failure mechanism and the dynamics of rock slopes. Finite element slope stability analysis of three rock slopes in Garhwal Himalaya, India has been carried out using a two dimensional plane strain approach. Two different modelling techniques have been attempted for this study. Firstly, the slope is represented as a continuum in which the effect of discontinuities is considered by reducing the properties and strength of intact rock to those of rock mass. The equivalent Mohr-Coulomb shear strength parameters of generalised Hoek-Brown (GHB) criterion and modified Mohr-Coulomb (MMC) criterion has been used for this continuum approach. Secondly, a combined continuum-interface numerical method has been attempted in which the discontinuities are represented as interface elements in between the rock walls. Two different joint shear strength models such as Barton-Bandis and Patton’s model are used for the interface elements. Shear strength reduction (SSR) analysis has been carried out using a finite element formulation provided in the PHASE2. For blocky or very blocky rock mass structure combined continuum-interface model is found to be the most suitable one, as this model is capable of simulating the actual field scenario.  相似文献   

20.
重庆武隆鸡尾山滑坡视向滑动机制分析   总被引:8,自引:0,他引:8  
冯振  殷跃平  李滨  张明 《岩土力学》2012,33(9):2704-2713
重庆武隆鸡尾山山体为典型的斜倾厚层灰岩山体,其破坏模式不同于常见侧向崩塌-堆积层滑坡,属于真倾向滑移变形转为视向整体滑动的特殊失稳模式。在现场地质调查的基础上,从地层岩性、岩体结构、岩溶及地下水作用、软弱夹层等影响因素分析重庆武隆鸡尾山滑坡形成原因;根据滑坡破坏机制,基于关键块体控制理论,对鸡尾山滑坡进行三维稳定性极限平衡分析;利用三维离散元软件模拟鸡尾山滑坡的初始变形破坏过程,分析了鸡尾山滑坡不同影响因素条件下的视向滑动形成机制和变形破坏特征,并探讨了节理化和溶蚀岩体的参数取值。结果分析认为,在重力的长期作用下,鸡尾山山体初始沿真倾向方向滑移,沿岩溶发育的陡倾节理裂隙逐渐产生后缘及侧向裂缝,形成块状后部驱动块体,由于地下水等因素使软弱夹层软化,驱动块体下滑力增大,前缘阻滑关键块体内部应力积累,并最终沿强度较低的岩溶发育带发生剪切破坏,从而导致整体滑动;在进行滑坡稳定性极限平衡分析时,考虑实际的滑坡机制,将滑体分为驱动块体和关键块体分别进行力的解析,并以关键块体的安全系数代表滑坡的安全系数更加合理。数值模拟显示,软弱夹层强度降低、岩溶发育带剪切破坏后,滑体进入大变形阶段,表明关键块体控制和阻滑作用明显,软弱夹层强度降低是滑坡发生的关键因素。采矿形成的采空区对山体的影响主要是使上覆岩体压应力增大,但对滑体的变形无影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号