首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
We estimated the northward heat flux through the eastern channel of the Bering Strait during the ice-free seasons between 1999 and 2008. This is likely about half of the total heat flux through the strait. The net volume transport and heat flux through the eastern channel of the strait were estimated from multiple linear regression models with in-situ/satellite remotely sensed datasets and NCEP reanalysis 10 m wind. The net volume transport was well explained by the west-east slope of sea level anomaly and NNW wind component at the strait. On the heat flux, the contributions of both barotropic and baroclinic components were taken into account. Estimated volume transport and vertical profile of temperature were used to calculate northward heat flux through the eastern channel of the strait. The magnitude of the estimated heat flux is comparable to estimates from in-situ measurements. Averaged heat flux in the eastern Bering Strait between 2004 and 2007 was about 1.9 times larger than that between 2000 and 2003. Maximum heat flux occurred in 2004, and same magnitude of heat flux was estimated from 2005 to 2007. This resulted not only from the increase in northward volume transport but also anomalous warm water intrusion from the Bering Sea. Our results suggest a candidate among the important parameters controlling heat budget, which contributes to the Arctic sea ice reduction, whereas more studies are required to confirm that this mechanism is actually responsible for the interannual and longer timescale variability.  相似文献   

2.
Hydrographic conditions in the Tsushima Strait revisited   总被引:1,自引:1,他引:0  
Long-term averaged temperature and salinity distributions in the Tsushima Strait are investigated on the basis of a concurrent dataset of the eastern and western channels during 1971–2000. Both temperature and salinity show a clear seasonal variation with weak and strong stratifications in December–April and June–October, respectively. The largest standard deviations occur in summer around the thermocline for temperature and in the surface layer for salinity. This indicates large interannual variability in the development of a thermocline and low salinity water advection from the East China Sea. The water masses in both channels are distinctly different from each other; the water in the western channel is generally colder and fresher than that in the eastern channel throughout the year. Baroclinic transport based on the density distributions shows a seasonal variation with a single peak in August for the eastern channel and double peaks in April and August for the western channel. However, this cannot explain the seasonal variation in the total volume transport estimated from the sea level differences across the channels. The spatial distribution of baroclinic transport shows a year-round negative transport towards the East China Sea behind the Iki Island in the eastern part of the eastern channel. This negative transport reflects the baroclinic structure between the offshore Tsushima Current Water and cold coastal water. The corresponding southwestward currents are found in both Acoustic Doppler Current Profiler (ADCP) and high frequency (HF) radars observations.  相似文献   

3.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

4.
To investigate an mechanism of the seasonal variation of transport through the Tokara Strait, two numerical experiments with real geometry and wind forcing were carried out. The models are linear barotropic models which are a North Pacific Ocean model and a limited-area model with a fine grid. The seasonal variation of volume transport with a maximum in the summer and a minimum in the autumn could be well reproduced by both models. The results demonstrate the wind stress component normal to a gradient vector of bottom topography is crucial for determining the seasonal variation. The similar seasonal variation widely covers the East China Sea and has a large amplitude near the Tokara Strait. Finally, it can be concluded that winds north of 35°N have little influence on the seasonal response of our model at the Tokara Strait.  相似文献   

5.
The relations between the volume transport and the sea level difference across the Tsushima Straits have been investigated using current data provided by ADCP mounted on the ferry Camellia, plying between Hakata and Pusan. Empirical formulas to deduce the volume transports using the sea level differences across the eastern and western channels are proposed, considering the seasonal variation of the vertical current structure. The interannual variation of volume transport through the Tsushima Straits for 37 years from 1965 to 2001 is estimated using the empirical formulas. The total volume transport through the Tsushima Straits, averaged for 37 years, is 2.60 Sv and those of the eastern and western channels are 1.13 Sv and 1.47 Sv, respectively. The total volume transport through the Tsushima Straits tends to decrease with a roughly 15 year variation until 1992, then begins to increase.  相似文献   

6.
白令海峡夏季流量的年际变化及其成因   总被引:1,自引:1,他引:0  
张洋  苏洁 《海洋学报》2012,34(5):1-10
白令海峡是连接太平洋和北冰洋的唯一通道,穿过海峡的海水体积通量在年际尺度上的变化主要取决于海峡南北两侧的海面高度差,白令海峡的入流对北冰洋海洋过程有重要的意义。利用SODA资料计算夏季白令海峡海水体积通量,对其年际变化及成因进行分析。结果表明夏季白令海峡的体积通量主要是正压地转的;当体积通量为正距平时,楚科奇海、东西伯利亚海、拉普捷夫海以及波弗特海南部海面高度为负距平,同时,白令海陆架海面高度为正距平;对这些海域的Ekman运动、上层海洋温度、盐度和垂直流速进行分析,发现海面高度异常与海峡体积通量的这种关系主要是与海面气压异常分布所产生的Ekman运动有关。当白令海峡的体积通量为正距平时,北冰洋中央海面气压为正距平,白令海海盆海面气压为负距平。这种气压的异常分布在一定程度上解释了上层海洋运动、海水温盐结构与白令海峡入流的关系,从而把夏季大尺度大气环流和白令海峡体积通量的年际变化联系了起来。  相似文献   

7.
The seasonal variation in the barotropic mode of motion caused by joint effect of the baroclinicity and bottom relief (Jebar effect) in the Tsushima Strait is investigated with the use of the diagnostic numerical model in this study. The Jebar effect in the Tsushima Strait is mainly caused by the intrusion of the Bottom Cold Water along the Korean coast in summer. This Jebar effect along the Korean coast locally supplies the negative vorticity in situ, and it forces the coastal current to be intensified. In summer, the volume transport of the Tsushima Warm Current entering the Tsushima Strait is biassed to the western part of the strait comparing with the flow pattern calculated in winter.  相似文献   

8.
We discussed the short-term fluctuations of the Tsushima Current, using ADCP (acoustic Doppler current profiler) data taken by the quadrireciprocal method (Katoh, 1988) for removing tidal currents from observed currents. Transects were set in waters northwest of Yamaguchi Prefecture to capture the first and second branches of the Tsushima Current. Along the transects, ADCP and STD (salinitytemperature-depth recorder) measurements were repeated in May to July 1989. The velocity of the first branch fluctuated considerably in a short period, while the direction and position of its axis were steadly. The stability of its axis position probably results from the topographic effect. The baroclinic transport, which is based on calculations of geostrophic current with assuming zero velocity near the bottom, of the first branch was almost equal to the barotropic one. The range of fluctuation in the barotropic transport was much larger than that in the baroclinic transport. The barotropic fluctuation was correlated with the difference in atmospheric pressure between the east and west sides of the Tsushima Strait. As for the second branch, not only the velocity but also the position of its axis changed noticeably in a short period. There was such a case where the axis was hardly recognized. The changeability of the axis position for the second branch seems to result from that of the cold water front. The baroclinic transport of the second branch was much larger than the barotropic one, but the ranges of their fluctuations were very similar with each other.  相似文献   

9.
A simple analytical model is considered for the dynamics of volume transport of the Tsushima Current. This model is basically baroclinic but allows bottom friction over the shallow regions connecting the Pacific Ocean to the Japan Sea basin, and is thus different from previous models which are either purely barotropic with bottom friction predominating over the whole domain, or purely baroclinic with bottom friction completely ignored. Compared to the previous barotropic model, this model is not only more realistic but also gives much simpler results. It gives the observed downstream sea level slope, which is not seen in the previous baroclinic model. As a result, the estimated transport of the Tsushima Current is closer to the observational data than those of previous models. This model indicates that the localized bottom friction acting over the shallow regions not only controls the transport of the Tsushima Current but also moves the stagnation point of the western boundary current northward. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
王坤  毕海波  黄珏 《海洋科学》2022,46(4):44-54
北极海冰作为一个巨大的淡水资源库, 每年向全球输送大量淡水资源, 从北极输出的海冰在向南输送的过程中融化, 对海洋水循环与水环境产生影响, 进而影响全球气候变化, 弗雷姆海峡作为北极海冰输出的主要通道, 对其研究显得尤为重要。为了解弗雷姆海峡海冰长期输出量, 利用美国冰雪数据中心(NSIDC)发布的海冰密集度、海冰厚度与海冰漂移速度数据, 计算得到 1979 年至 2019 年弗雷姆海峡海冰输出面积通量与 2010 至 2019 年弗雷姆海峡海冰输出体积通量, 并在此基础上分析弗雷姆海峡近 40 a 海冰输出量的变化状况以及弗雷姆海峡海冰输出的年际变化、季节变化, 并分析了影响弗雷姆海峡海冰输出量的可能原因。结果表明: 近 40 a 弗雷姆海峡年均海冰输出面积通量为 7.83×105 km2,近 10 a 弗雷姆海峡海冰年均输出体积通量为 1.34×106 km3, 从长期来看, 弗雷姆海峡海冰输出面积通量呈略微增加趋势, 弗雷姆海峡海冰输出体积通量在 2010—20...  相似文献   

11.
本文基于2002—2016年OFAM(Ocean Forecast Australian Model)模式数据,通过谱分析与相关分析等方法,研究了龙目海域上层环流结构的季节变化特征及主要的影响因素。分析结果表明,龙目海峡(Lombok Strait)平均流量占印尼贯穿流(Indonesian throughflow, ITF)总出口流量的15%,呈现出南半球冬强夏弱的特点,具有半年和一年的周期特征;龙目海域上层环流结构具有明显的季节特征,受到卡里马塔海峡贯穿流(Karimatastraitthroughflow,KSTF)和望加锡海峡贯穿流(Makassarstrait throughflow,MSTF)的周期性影响,一年可以分为四个阶段,存在结构性差异。KSTF(MSTF)为上层龙目海峡带来高温低盐(低温高盐)水团。进一步分析发现局地风场、大气季节内振荡(Madden-Julian Oscillation, MJO)以及海底地形是龙目海域上层环流结构季节变化的主要影响因素。  相似文献   

12.
The effect of the Taiwan Strait Current on the onshore intrusion of Kuroshio, both contributing to the formation of Tsushima Warm Current, is addressed theoretically by invoking a geostrophic adjustment model previously proposed. The idealized model assumes two unbounded basins, shallow and deep, separated by an infinitely long and thin barrier. On either side of the barrier, a western boundary current in the deep basin and a shelf current in the shallow basin flow along the barrier with the surface elevation of the former higher than that of the latter. When a part of the barrier is removed and a gap is created, the onshore part of the western boundary current intrudes onto the shallow basin through the gap while conserving its potential vorticity. Both the intruding current and the shelf current will later geostrophically adjust themselves to the disturbances created by the intrusion. Model results show that the transport of onshore intrusion increases with the sea level difference imposed initially between the deep and shallow basins across the barrier, indicating that the sea level rise associated with the strengthening of shelf current inhibits the shelf-ward intrusion. The intruding current is in jet mode when its transport is maximized, which otherwise is in coastal mode. The maximization of transport occurs when the sea level difference between the two basins is sufficiently large. Although this model greatly idealizes the problem, it explains well the observed fact that the transport of Tsushima Warm Current is fed mostly by the Taiwan Strait Current in summer when the latter becomes the strongest, and by the onshore intrusion of Kuroshio in winter when the Taiwan Strait Current nearly vanishes, suggesting that the seasonal variation of the onshore intrusion of Kuroshio is largely due to the seasonal variation in the strength of the Taiwan Strait Current.  相似文献   

13.
Recent investigation suggests that volume transport through the Tsushima/Korea Strait often has double peaks during the summer to autumn period with decreasing transport in September. The satellite-observed wind changes from weak northwestward (across-strait) in summer to strong southwestward (along-strait) in early autumn (September) in the strait. Such a strong along-strait wind is related to tropical cyclones, which frequently pass through the East China Sea in September. The effect of the along-strait wind component on the transport variation is examined using a three-dimensional numerical model. The simulated volume transport through the Tsushima/Korea Strait shows realistic seasonal and intra-seasonal variations. According to sensitivity experiments on local winds, the transport variations in September are mainly generated by strong along-strait (southwestward) wind rather than weak across-strait wind. The strait transport responds to the along-strait wind (southeastward), which produces a sea level increase along the Korean coast, resulting in the geostrophic balance across the strait. The transport minimum through the Tsushima/Korea Strait in September can be determined by the combination of the across-strait geostrophic and along-strait ageostrophic balances. The Editor-in-Chief does not recommend the usage of the term “Japan/East Sea” in place of “Sea of Japan”.  相似文献   

14.
Interannual variations of sea level at the Nansei Islands and volume transport of the Kuroshio during 1967–95 are calculated by integrating variations carried by windforced Rossby waves. Effects of eddy dissipation and ocean ridges are considered. Ridge effect is inferred by comparing between the calculated and observed sea levels. The calculation is satisfactory to sea levels and Kuroshio transport for the whole period. They are mostly caused by Rossby waves forced by wind and modified by the ridges, and are due to barotropic wave primarily and the first baroclinic wave secondly. The calculated Kuroshio transport well represents variations of several-year scales with maximums in respective duration of the large meander (LM) of the Kuroshio, as well as bi-decadal variation that transport was small during the non-LM period of 1967–75 and large during the LM-dominant period of 1975–91. Mean volume transport of the subtropical gyre is estimated at 57 Sv (1 Sv = 106 m3s–1) and divided by the Nansei Shoto Ridge into those of the Kuroshio in the East China Sea (25.5 Sv) and a subsurface current east of this ridge (31.5 Sv). The Subtropical Countercurrent and a southward deep current east of the Izu-Ogasawara Ridge are estimated at 16 Sv and 7 Sv, respectively. The calculated transports of the Kuroshio and other subtropical currents reach maximums at every El Niño event due to strong excitement of upwelling barotropic Rossby wave.  相似文献   

15.
Relationships of the sea level differences between Naze and Nishinoomote and between Kushimoto and Uragami with wind stress over the North Pacific are examined for interannual variability. These sea level differences are considered to be indications of Kuroshio transport in Tokara Strait and Kuroshio path south of Enshu-nada, respectively. In the sea level difference between Kushimoto and Uragami, dominant variations are found to have periods of about seven years and 3–4 years. The variation of about 7-year period, which corresponds to that in the Kuroshio path between the large meander and non-large meander, is coherent with the variation of the wind stress curl in a region about 2,400 km east of the Kii Peninsula, where negative stress curl weakens about two years before the sea level difference drops (i.e. the large meander path in the Kuroshio generates). The variation of the 3–4 year period is coherent with that of the wind stress in a large area covering the eastern equatorial Pacific, which suggests that it links with global-scale atmospheric variations. Interannual variation in sea level difference between Naze and Nishinoomote is not coherent with that between Kushimoto and Uragami, which suggests that it is not related to the variation of the Kuroshio path south of Enshu-nada, but is coherent with that of the zonally-integrated Sverdrup transport in the latitudinal zone along 30°N. It is suggested that the interannual variation of the Kuroshio transport in Tokara Strait can be explained by the barotropic response to the wind stress.  相似文献   

16.
Although the Tsushima Current exhibits a complicated meander in the interior region of the Japan Sea, its path is more regular in the southwest region near the Tsushima Strait, and three branches have often been recognized there by many investigators. However, the detailed structures and temporal variabilities of these branches have not been clarified, and so they are studied here by analysing temperature, salinity and sea level data. It is shown that the existence of the first branch (the nearshore branch along the Japanese coast) can be detected from salinity distributions at least during the period from March to August. The third branch (the Eastern Korean Current) exists in all seasons. On the other hand, the second branch (the offshore branch) is seasonally variable and can be identified only in summer from June to August. Along the Japanese coast of southwest Japan Sea, the main pycnocline intersects the gentle slope on the shelf at a depth between 150 and 200 m. The first branch is found on the coastal side of the line where the main pycnocline intersects the bottom slope. On the other hand, the second branch is formed just on the seaward side of this line. Sea level differences in the Tsushima Strait, i.e., between Hakata and Izuhara and between Izuhara and Pusan, show that the seasonal variation of the surface velocity (or volume transport) is small in the eastern channel and large in the western channel. The period during which the surface velocity and volume transport in the western channel increase corresponds well to the period during which the second branch exists. These results suggest that the effects of bottom topography and oceanic stratification in the Japan Sea as well as the time variation of inflow through the western channel of the Tsushima Strait play important roles in the formation of the second branch.  相似文献   

17.
Numerical experiments with a multi-level general circulation model have been performed to investigate basic processes of westward propagation of Rossby waves excited by interannual wind stress forcing in an idealized western North Pacific model with ocean ridges. When the wind forcing with an oscillation period of 3 years is imposed around 180°E and 30°N, far from Japan, barotropic waves excited by the wind can hardly cross the ridges, such as the Izu-Ogasawara Ridge. On the other hand, a large part of the first-mode baroclinic waves are transmitted across the ridges, having net mass transport. The propagation speed of the first-mode baroclinic wave is accelerated (decelerated) when an anticyclonic (cyclonic) circulation is formed at the sea surface, due to a deeper (shallower) upper layer, and to southward (slightly northward) drift of the circulation. Thus, when the anticyclonic circulation is formed on the northern side of the cyclonic one, they propagate almost together. The second-mode baroclinic waves converted from the first-mode ones on the ridges arrive south of Japan, although their effects are small. The resulting volume transport variation of the western boundary current (the Kuroshio) reaches about 60% of the Sverdrup transport variability estimated from the wind stress. These characteristics are common for the interannual forcing case with a longer oscillation period. In the intraseasonal and seasonal forcing cases, on the other hand, the transport variation is much smaller than those in the interannual forcing cases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   

19.
田川  王树新  徐霄阳 《海洋科学》2015,39(1):110-115
利用在台湾海峡附近的下放式声学多普勒流速剖面仪(Lowered Acoustic Doppler Current Profiler,LADCP)观测资料和温盐观测资料,通过对连续站的两个季节观测进行正压和斜压潮流分析从而去除潮流得到准定常流,并在此基础上计算了南海和东海之间通过台湾海峡输运的水体及热盐通量。结果表明:台湾海峡大部分海域是半日潮海区(正规半日潮及不正规半日潮海区),半日潮主要分量为太阴半日分潮M2;台湾海峡的水体输运及热盐通量呈现明显的季节变化:夏季台湾海峡内表现为一支东北流向的海流,即台湾海峡暖流,存在3.3 Sv(1Sv=106 m3/s)的东北向水体输运,冬季东北季风较强,西南方向的海流加强,混合层可达到底部,存在1.8 Sv的东北向水体输运。与此对应的热盐通量分别为:夏季热通量为0.34×1015 W,盐通量为118.6×109 g/s;冬季热通量为0.14×1015 W,盐通量为72.9×109 g/s。该结果对台湾海峡通量的研究给出了一个直接观测的准确值,并为相关的数值研究提供了参考。  相似文献   

20.
The ADCP data obtained in the Tsushima Strait in the period from February 1987 to November 1990 on board twelve patrol vessels and one research vessel belonging to Maritime Safety Agency was analyzed. Total amount of the data is 200,053, but after quality check, we used 158,401 data for the analysis of the current field and its variability in the strait. The seasonal variation of the currents had been believed to be large. However, no direct current observation throughout the season had been made, and the knowledge on the seasonal variation was derived indirectly from the data of the sea level difference across the strait and of the density field given by hydrographic observations. ADCP data indicates that the seasonal variation of the current field is considerably small in all sub-regions. In the relatively strong current region to the west of the Tsushima Island, the northeast current component has maximum value in the early winter season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号