首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

2.
We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth’s Moon stabilizes Earth’s obliquity such that it remains within a narrow range, between 22.1° and 24.5°. Without lunar influence, a frequency map analysis by Laskar et al. (Laskar, J., Joutel, F., Robutel, P. [1993]. Nature 361, 615–617) showed that the obliquity could vary between 0° and 85°. This has left an impression in the astrobiology community that a big moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20–25° in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of prograde rotators. The total obliquity range explored for moonless Earths with rotation periods less than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.  相似文献   

3.
We reconsider two hypotheses used in calculating the transfer of angular momentum between the oceans and the solid Earth: (1) The locked-cean-ypothesis was already given up some time ago; here we provide a simple manner of understanding the relative importance of the motion and matter term. (2) The isolation hypothesis implied the isolation of the whole Earth in short timescales with regard to angular momentum exchange, and consequently, the neglection of the exchange with the tide-enerating body. It is shown that for present accuracy requirements this exchange has to be taken into account.  相似文献   

4.
By studying orbits of asteroids potentially in 3:2 exterior mean motion resonance with Earth, Venus, and Mars, we have found plutino analogs. We identify at least 27 objects in the inner Solar System dynamically protected from encounter through this resonance. These are four objects associated with Venus, six with Earth, and seventeen with Mars. Bodies in the 3:2 exterior resonance (including those in the plutino resonance associated with Neptune) orbit the Sun twice for every three orbits of the associated planet, in such a way that with sufficiently low libration amplitude close approaches to the planet are impossible. As many as 15% of Kuiper Belt objects share the 3:2 resonance, but are poorly observed. One of several resonance sweeping mechanisms during planetary migration is likely needed to explain the origin and properties of 3:2 resonant Kuiper Belt objects. Such a mechanism likely did not operate in the inner Solar System. We suggest that scattering by the next planet out allows entry to, and exit from, 3:2 resonance for objects associated with Venus or Earth. 3:2 resonators of Mars, on the other hand, do not cross the paths of other planets, and have a long lifetime. There may exist some objects trapped in the 3:2 Mars resonance which are primordial, with our tests on the most promising objects known to date indicating lifetimes of at least tens of millions of years. Identifying 3:2 resonant systems in the inner Solar System permits this resonance to be studied on shorter timescales and with better determined orbits than has been possible to date, and introduces new mechanisms for entry into the resonant configuration.  相似文献   

5.
While trajectory design for single satellite Earth observation missions is usually performed by means of analytical and relatively simple models of orbital dynamics including the main perturbations for the considered cases, most literature on formation flying dynamics is devoted to control issues rather than mission design. This work aims at bridging the gap between mission requirements and relative dynamics in multi-platform missions by means of an analytical model that describes relative motion for satellites moving on near circular low Earth orbits. The development is based on the orbital parameters approach and both the cases of close and large formations are taken into account. Secular Earth oblateness effects are included in the derivation. Modeling accuracy, when compared to a nonlinear model with two body and J2 forces, is shown to be of the order of 0.1% of relative coordinates for timescales of hundreds of orbits. An example of formation design is briefly described shaping a two-satellite formation on the basis of geometric requirements for synthetic aperture radar interferometry.  相似文献   

6.
We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about $50^{\circ }$ even if the most stable orbits are found at $i \le 40^{\circ }$ . This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of $10^9$  years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.  相似文献   

7.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   

8.
Of the many proposed modes of origin of the Moon, some violate physical laws; many are in conflict with observations; all are improbable. Perhaps the least improbable - based on recent tidal theory calculations and on the interpretation of lunar rock data - is capture of the Moon as it passed near the Earth in adirect (prograde) orbit, shortly after the formation of Moon and Earth, about 4.5 billion years ago. (Capture of the Moon from an initiallyretrograde orbit which had been proposed some years ago, leads to physically unacceptable consequences.) The effects of capture on the Earth would have been cataclysmic, leading to intensive heating of its interior, to volcanism, and to the immediate formation of an atmosphere and hydrosphere. Thus capture of a Moon may have given rise to the unique properties of the Earth (in the Solar System) and to the early evolution of life, about 3.5 billion years ago.Presented at the NATO Advanced Study Institute on Lunar Studies in Patras, Greece, September, 1971.  相似文献   

9.
We review recent observational results which suggest that magnetically channeled accretion in T Tauri stars is a highly time dependent process on timescales ranging from hours to months.  相似文献   

10.
James B. Pollack 《Icarus》1979,37(3):479-553
In this paper, we review the observational data on climatic change for the terrestrial planets, discuss the basic factors that influence climate, and examine the manner in which these factors may have been responsible for some of the known changes. Emphasis is placed on trying to understand the similarities and differences in both the basic factors and their climatic impacts on Venus, the Earth, and Mars. Climatic changes have occurred on the Earth over a broad spectrum of time scales that range from the elevated temperatures of Pre-Cambrian times (~109 years ago), through the alternating glacial and interglacial epochs of the last few million years, to the small but significant decadal and centurial variations of the recent past. Evidence for climatic change on Mars is given by certain channel features, which suggest an early to intermediate aged epoch of warmer and wetter climate, and by layered polar deposits, which imply more recent periodic climate variations. No evidence for climatic change on Venus exists as yet, but comparison of its present climate state with that of outer terrestrial planets offers important clues on some of the mechanisms affecting climate. The important determinants of climate for a terrestrial planet include the Sun's output, astronomical perturbations of its orbital and axial characteristics, the gaseous and particulate content of its atmosphere, its land surface, volatile reservoirs, and its interior. All these factors appear to have played major roles in causing climatic changes on the terrestrial planets. Despite a lower solar luminosity in the past, the Earth and Mars have had warmer periods in their early history. In both cases, a more reducing atmosphere may have been the responsible agent through an enhanced greenhouse effect. In this paper, we present detailed calculations of the effect of atmospheric pressure and composition on the temperature state of Mars. We find that the higher temperature period is easier to explain with a reducing atmosphere than with the current fully oxidizing one. Both the very high surface temperature and massive atmosphere of Venus may be the result of the solar flux being a factor of two higher at its orbit than at the Earth's orbit. This difference may have led to a runaway greenhouse effect on Venus, i.e., the emplacement of volatiles entirely in the atmosphere rather than mostly in surface reservoirs. But if Venus formed with relatively little or no water, it may have always had an oxidizing atmosphere. In this case, a lower solar luminosity would have led to a moderate surface temperature in Venus' early history. Quasi-periodic variations in orbital eccentricity and axial obliquity may have contributed to the alternation between Pleistocene glacial and interglacial periods in the case of the Earth and to the formation of the layered polar deposits in the case of Mars. In this paper, we postulate that two mechanisms, acting jointly, account for the creation of the laminated terrain of Mars: dust particles serve as nucleation centers for the condensation of water vapor and carbon dioxide. The combined dust-H2O-CO2 particle is much larger and so has a much higher terminal velocity than either a dust-H2O or a plain dust particle. As a result, dust and water ice are preferentially deposited in the polar regions. In addition, we postulate that the obliquity variations are key drivers of the periodic layering because of their impact on both atmospheric pressure and polar surface temperature, which, in turn, influence the amounts of dust and water ice in the atmosphere. But eccentricity and precessional changes probably also play important roles in creating the polar layers. The drifting of continents on the Earth has caused substantial climatic changes on individual continents and may have helped to set the stage for the Pleistocene ice ages through a positioning of the continents near the poles. While continental drift apparently has not occurred on Mars, tectonic distortions of its lithosphere may, in some circumstances, cause an alteration in the mean value of that planet's obliquity, which would significantly impact its climate. Atmospheric aerosols can influemce climate through their radiative effects. In the case of the Earth, volcanic aerosols appear to have contributed to past climatic changes, while consideration needs to be given to the future impact of man-generated aerosols. In the case of Mars, the atmospheric temperature structure and thereby atmospheric dynamics are greatly altered by suspended dust particles. The sulfuric acid clouds of Venus play a major role in its heat balance. Cometary impacts may have added substantial quantities of water vapor and sulfur gases to Venus' atmosphere and thus have indirectly affected its cloud properties. Calculations presented in this paper indicate substantial changes in surface temperature accompany these compositional changes.  相似文献   

11.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   

12.
Reviving a calculation made by Eddington in the 1920s, and using the most recent and comprehensive databases available on stars and galaxies, including more than 2,500,000 stars and around 20,000 galaxies we have computed their total radiation received at the Earth just outside its atmosphere. This radiation density, if thermalized, would be equivalent to a temperature of 4.212 K. The comparability of this temperature to that of the cosmic microwave background (2.723 K) may either be a pure coincidence or may hold a key to some as yet unknown, aspect of the universe.  相似文献   

13.
The recent systematic monitoring of the skies has led to the discovery of an increasingly large number of objects on Earth approaching orbits. Not surprisingly, an increasing number of this population have also been associated with meteoroid streams in the literature. We will review the history of this topic. We have also conducted our own search for asteroids moving on orbits that are similar to the orbits of known fireball streams. As NEOs are moving in prograde orbits with low geocentric velocities, any potential streams will have large radiant areas and in consequence, may have been identified as several "sub-streams". This greatly hampers both their detection and their recognition as single meteoroid streams. With the large number of Near Earth Asteroids detected, the probability of two orbits being similar at the present time by coincidence is high. We have therefore also investigated the evolution of the orbits and only include as real asteroid-stream pairs those where the evolution is also similar over 5000 years. We have identified nine pairs, including the well known pair of the Geminid meteoroid stream and asteroid 3200 Phaethon. Currently there are a number of papers being published on the pairing of asteroid 2003 EH1 and the Quadrantid meteoroid stream. Because of the newness of the research and the fact that this is a high inclination pair, we have excluded this pair from our discussions.  相似文献   

14.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

15.
To determine where to search for life in our solar system or in other extrasolar systems, the concept of habitability has been developed, based on the only sample we have of a biological planet—the Earth. Habitability can be defined as the set of the necessary conditions for an active life to exist, even if it does not exist. In astronomy, a habitable zone (HZ) is the zone defined around a sun/star, where the temperature conditions allow liquid water to exist on its surface. This habitability concept can be considered from different scientific perspectives and on different spatial and time scales. Characterizing habitability at these various scales requires interdisciplinary research. In this article, we have chosen to develop the geophysical, geological, and biological aspects and to insist on the need to integrate them, with a particular focus on our neighboring planets, Mars and Venus. Important geodynamic processes may affect the habitability conditions of a planet. The dynamic processes, e.g., internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget, and the availability of nutrients. They thus play a role in the persistence of life on a planet. Earth had a liquid water ocean and some continental crust in the Hadean between 4.4 and 4.0 Ga (Ga: billions years ago), and may have been habitable very early on. The origin of life is not understood yet; but the oldest putative traces of life are early Archean (~3.5 Ga). Studies of early Earth habitats documented in the rock record hosting fossil life traces provide information about possible habitats suitable for life beyond Earth. The extreme values of environmental conditions in which life thrives today can also be used to characterize the “envelope” of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients by life for biosynthesis of cellular constituents and for growth, reproduction, transport, and motility may suggest that a dynamic and rocky planet with hydrothermal activity and formation of relief, liquid water alteration, erosion, and runoff is required to replenish nutrients and to sustain life (as we know it). The concept of habitability is very Earth-centric, as we have only one biological planet to study. However, life elsewhere would most probably be based on organic chemistry and leave traces of its past or recent presence and metabolism by modifying microscopically or macroscopically the physico-chemical characteristics of its environment. The extent to which these modifications occur will determine our ability to detect them in astrobiological exploration. Looking at major steps in the evolution of life may help determining the probability of detecting life (as we know it) beyond Earth and the technology needed to detect its traces, be they morphological, chemical, isotopic, or spectral.  相似文献   

16.
In a recent paper Crick and Orgel (1973) asserted that the anomalous abundance of molybdenum in living organisms is evidence that life may have originated somewhere else in the Universe and was transported to Earth. Their argument concerned a comparison of the relative abundances and biological importance of chromium, nickel, and molybdenum. We point out that a more careful consideration of these elements does not support their conclusion.  相似文献   

17.
The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east–west and north–south directed components, with Pearson’s correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME (i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.  相似文献   

18.
Abstract— The concentrations of cosmogenic radionuclides and noble gases in Pitts (IAB) and Horse Creek (ungrouped) provide unambiguous evidence that both irons have a complex exposure history with a first‐stage irradiation of 100–600 Myr under high shielding, followed by a second‐stage exposure of ?1 Myr as small objects. The first‐stage exposure ages of ?100 Myr for Horse Creek and ?600 Myr for Pitts are similar to cosmic‐ray exposure ages of other iron meteorites, and most likely represent the Yarkovsky orbital drift times of irons from their parent bodies in the main asteroid belt to one of the nearby chaotic resonance zones. The short second‐stage exposure ages indicate that collisional debris from recent impact events on their precursor objects was quickly delivered to Earth. The short delivery times suggests that the recent collision events occurred while the precursor objects of Horse Creek and Pitts were either very close to the chaotic resonance zones or already in Earth‐crossing orbits. Since the cosmogenic noble gas records of Horse Creek and Pitts indicate a minimum radius of a few meters for the precursor objects, but do not exclude km‐sized objects, we conclude that these irons may represent fragments of two near‐Earth asteroids, 3103 Eger and 1986 DA, respectively. Finally, we used the cosmogenic nuclide concentrations in Horse Creek, which contains 2.5 wt% Si, to test current model calculations for the production of cosmogenic 10Be, 26Al, and neonisotopes from iron, nickel, and silicon.  相似文献   

19.
Numerical models of mantle convection that include the ‘basalt barrier’ mechanism are explored for Venus. The ‘basalt barrier’ mechanism is due to the positive buoyancy of subducted basaltic crust between the mantle depths of 660 and 750 km. The inclusion of this mechanism in models of Earth’s evolution has been shown to cause episodic mantle layering early in Earth history and we explore whether it can also operate on Venus. The models presented here include a moderately mobile lithosphere, which is not representative of the current state of Venus, but this allows us to exclude the effects of episodic lithosphere mobility and thus to isolate the effect of the basalt barrier. This is a step in a systematic approach to models with a mostly-static lithosphere. We find the basalt barrier does yield episodically layered mantle convection in some Venus models. The likelihood of episodic layering is increased by Venus high surface temperature and by its less mobile or immobile lithosphere. Surprisingly, secondary differences from Earth, including the lower gravity, density and mantle depth also promote episodic layering. The models suggest that mantle layering and overturns may still be likely to occur in Venus. The breakdown of mantle layering and consequent mantle overturns would lead to dramatic episodes of volcanism, formation of large amounts of crust, and tectonic activity on the planet’s surface, as has been inferred to have happened on Venus around 500 Ma ago from surface morphology and cratering. These results thus suggest that a transient layering of the mantle by the ‘basalt barrier’ mechanism and mantle overturns may be part of the explanation for Venus’s recent resurfacing.  相似文献   

20.
Several Snowball Earth periods, in which the Earth has been (almost) totally glaciated, are known from Earth history. Neither the trigger for the initiation, nor the reason for the ending of such phases, are well understood. Here we discuss some mechanical effects of the impact of asteroids 5–10 km in diameter on the Snowball Earth environment. An impact of this scale is the largest impact that is statistically predictable for 10–60 Myr time periods. The impact cratering itself (shock waves, impact crater formation) is not powerful enough to change the natural climate evolution path on Earth. However, the products of impact (mainly—water vapor) can be quickly distributed over a substantial part of the globe, influencing the global circulation (e.g., facilitating cloud formation). It is a question for future studies to confirm if such an event (which is possible statistically during this interval) may or may not have influenced the global climate of the Snowball Earth, and/or contributed to deglaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号