首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray polarization measurements at three flares occurred in October 1969 were performed by means of a Thomson scattering type instrument installed on board the satellite Intercosmos-1. The polarization (P) at the wavelength of about 0,8 Å was detected at the rising phase and at the second maximum of intensity. The obtained averaged value of P for all three flares is 0.4 ± 0.2 at confidence level 0.9.  相似文献   

2.
Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.  相似文献   

3.
We review recent observations of polarization of moderately hard X-rays in solar flares and compare them with the predictions of recent detailed modeling of hard X-ray bremsstrahlung production by non-thermal electrons. We find that the recent advances in the complexity of the modeling lead to substantially lower predicted polarizations than in earlier models and more fully highlight how various parameters play a role in determining the polarization of the radiation field. The new predicted polarizations are comparable to those predicted by thermal modeling of solar flare hard X-ray production, and both are in agreement with the observations. In the light of these results, we propose new polarization observations with current generation instruments which could be used to discriminate between non-thermal and thermal models of hard X-ray production in solar flares.  相似文献   

4.
N. Vilmer 《Solar physics》1987,111(1):207-223
Solar hard X-ray emission is one of the most direct diagnostics of accelerated particles during solar flares. In this review, the current understanding of hard X-ray emission processes is discussed: first the different emission mechanisms (in particular inverse Compton radiation, energetic ion or electron bremsstrahlung) are presented and the plausibility of each of these mechanisms is discussed. Then, different types of hard X-ray models (thermal or non-thermal, homogeneous or inhomogeneous emission regions) are presented together with the comparison of their predictions with X-ray observations (spectral, spatial and temporal informations - directivity and polarization).Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

5.
An attempt has been made in the present work to reveal the directivity of solar non-thermal X-ray emission using the data obtained from the Prognoz and Explorer satellites. The frequency of occurrence of X-ray bursts and the mean intensities of the emission are studied as a function of distance from the central meridian. The most complete statistics have been obtained for the 4–24 keV X-ray bursts for the period 1970–1973. The X-ray burst frequency of occurrence normalized to the corresponding H flare frequency increases towards the solar limb. During the studied period this trend is more pronounced to the east than to the west. Distributions of the mean intensities of X-ray bursts are very similar to those of the frequency of occurrence of X-ray bursts; the effect is more noticeable for the low intensity bursts. The effect of the east-west asymmetry for H flares has been found to vary in magnitude and direction during the 20th solar activity cycle.  相似文献   

6.
Measurements of three X-ray flares in October/November 1970 abord the Intercosmos 4 satellite confirm the existence of polarization in the initial phase of the X-ray bursts. The polarization can be observed for a few up to ten minutes, and an increase in polarization is observed during secondary maxima of the bursts as well.  相似文献   

7.
Spectral and polarization characteristics of radio emission from hot X-ray kernels are considered. It is shown that the frequency spectrum of thermal cyclotron radio emission and bremsstrahlung from these regions may contain a set of lines at cyclotron harmonics and the maximum at plasma frequency. This makes possible the diagnostics of the X-ray kernel plasma and magnetic fields according to spectral and polarization observations of microwave radio emission in solar flares.  相似文献   

8.
Observational evidence suggests that both the hard X-ray and ultraviolet emission from the impulsive phase of flares result from an electron beam. We present the results of model calculations that are consistent with this theory. The impulsive phase is envisioned as occurring in many small magnetically confined loops, each of which maintains an electron beam for only a few seconds. This model successfully matches several observed aspects of the impulsive phase. The corona is heated to less than 2 × 106 K, maximum enhanced emission occurs in lines formed near 105 K, and there is only slight enhancement between 105 and 2 × 106 K. The slope of the observed relationship between hard X-ray and Ov 1371 Å emission is also matched, but the relative emission is not. The calculations indicate that UV emission lines formed below a temperature of about 105 K will arise predominantly from the chromospheric region heated by the electron beam to transition region temperatures. Emission lines formed at higher temperatures will be produced in the transition region. This should be detectable in density-sensitive line ratios. To account successfully for the impulsive UV emission, the peak temperature in the impulsively heated loops must remain below about 2 × 106 K. Thus our model implies that the impulsive heating takes place in different loops from the hotter gradual phase emission.  相似文献   

9.
D. M. Horan 《Solar physics》1971,21(1):188-197
X-ray emission from seventeen X-ray flares was analyzed to obtain electron temperatures and emission measures associated with the source region in the solar corona. The source region was assumed to be isothermal with a Maxwellian electron velocity distribution.Flares which were characterized by a rapid initial X-ray flux increase were found to also have a rapid initial rise in electron temperature and emission measure. Flares which were characterized by a gradual initial X-ray energy flux increase were found to have a less rapid initial rise in electron temperature and emission measure. In all X-ray flares studied the peak temperature chronologically preceded the peak X-ray flux and the peak flux never came after the peak emission measure.Based on a dissertation submitted to The Catholic University of America, Washington, D.C.  相似文献   

10.
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be observed with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 Å have been resolved and identified, including several dielectronic recombination satellite lines to Si xiv and Si xiii lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.  相似文献   

11.
Detailed examination of the variations in the intensity of soft X-ray emission prior to many solar flares are presented. In addition, these preflare intensity variations are contrasted with the variations typically observed for the same active regions in the absence of a flare. It is shown that a 5–20 min preflare brightening phase is not typically observed. These observations are discussed in context with other complimentary investigations and theoretical models.  相似文献   

12.
The energy distributions of nonthermal electrons are derived from hard X-ray spectra taken during the impulsive phase of two 2B flares in February 1969. They are used to calculate the fluxes of nonthermally excited X-ray lines of hydrogen-like and helium-like ions. These fluxes are compared to the total line fluxes observed at the same time with crystal spectrometers. The nonthermal excitation is found to give only small contributions to the total line intensities. This implies that the impact polarization which is to be expected for anisotropic velocity distributions of the energetic electrons, will be low. Nevertheless it should be feasible to detect line polarization during the impulsive phase of strong X-ray flares.NAS/NRC Research Associate.  相似文献   

13.
Using the results of numerical simulations of the solar atmospheric response to heating by nonthermal electron beams during solar flares, we have calculated the spatial and temporal evolution of both (i) the direct (beam-target) nonthermal bremsstrahlung and (ii) the thermal bremsstrahlung arising from the hot plasma energized by the electron beam. Typically, we find that below a certain cross-over energy E *, the emission is dominated by the thermal component, while at higher energies the direct bremsstrahlung component becomes more important. This cross-over energy is dependent on the position within the loop, generally increasing with height.We have also investigated the dependence of the cross-over energy E * on the parameters of the electron energy input. At the time of peak electron flux injection the cross-over energy E * can, for plausible parameters, be as high as 52 keV at the top 1 pixel, and as low as 16 keV at the bottom 1 pixel. We conclude that a possible reassessment of SMM HXIS data as an indicator of the thermal or nonthermal character of the primary energy release (based primarily on the geometric properties of the hard X-ray source) is required. Our results also point to the minimum photon energy that future instruments should observe (where practical, giving due consideration to detector sensitivity) in order to be sure that, in the context of the thick-target interpretation, the nonthermal component is not swamped by the self-consistent thermal counterpart created by the beam heating.  相似文献   

14.
The calculations of Compton backscattering from the solar surface of flare X-rays performed by Tomblin (1972) are extended to higher energies. It is shown that the effect is even more pronounced in the 40 keV region and that it can lead to substantial corrections to the observed X-ray spectra.  相似文献   

15.
The linear polarization of X-ray lines from highly charged hydrogenic ions is calculated under the assumption that the ions are collisionally excited by nonthermal electrons with an anisotropic pitch-angle distribution around magnetic field lines. The results are applied to the conditions in solar flares. The maximum degree of polarization to be expected is quite low, of the order of some percent. In case of favourable conditions it should be feasible to detect line polarization during flares if the short-wavelength fine-structure component of the L doublet is observed.  相似文献   

16.
An improved X-ray polarimeter is briefly described and preliminary results of the measurements carried out on the satellite Intercosmos-7 are presented. One flare with considerable polarization (P 16%) was observed on 1972 August 4. Two other flares with rather low polarization (P 4%; P 2%) were observed on 1972 August 7 and 11.  相似文献   

17.
The current status of our knowledge on the theory of radio emission from mildly relativistic electrons and its application in the interpretation of solar radio bursts are reviewed. The recent high spatial resolution microwave observations have given important information about the geometry of the emitting region and have helped in the computation of better inhomogeneous models that reproduce qualitatively several observational characteristics of the emission. The limitations of the observations and the theory (particularly the effect of mode coupling on the observed polarisation) are pointed out and the potential of the gyrosynchrotron process as a diagnostic of the physical conditions is discussed. This will help us to obtain quantitative information about the changes of the magnetic field and the acceleration of particles in solar flares.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

18.
A study of the onset phase often great hard X-ray bursts is presented. It is shown from hard X-ray and radio observations in different wavelength ranges that the energization of the electrons proceeds on a global time-scale of some tens of seconds. In nine of the bursts two phases of emission can be distinguished during the onset phase: the pre-flash phase, during which emission up to an energy limit ranging from some tens of keV to 200 keV is observed, followed ten to some tens of seconds later by the flash phase, where the count rate in all detector channels rises simultaneously to within some seconds. For two of the events strong -ray line emission is observed and is shown to start close to the onset of the flash phase.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

19.
Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer(SOXS) during 2003–2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride(CZT)detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation(R ≈0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated(R = 0.61) with the rise time of the flares while positively correlated(R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25–30 keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure(DEM) evolution is delayed by 60–360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.  相似文献   

20.
The properties of solar flare continuum emission at energies >300 keV are discussed. Emphasis is placed on observations made during the 21st Solar Maximum by -ray detectors aboard the Solar Maximum Mission and Hinotori satellites. The statistical properties of high-energy flares are presented, including their size-frequency distribution, spectral-index distribution, position distribution, and associated soft X-ray size. The temporal structure of the high-energy continuum is reviewed as well as attempts to model the structure by two-step acceleration and particle trapping. Evidence for the directivity of flare radiation is presented and statistical and stereoscopic analysis techniques are compared and contrasted. The first observations of flare -rays at energies > 10 MeV are examined. We show that the very high-energy emission must be a mixture of pion-decay radiation and primary electron bremsstrahlung. Finally, we present high-energy observations from the extended phase of the giant 3 June, 1982 flare which seem to require a new acceleration component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号