首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   

2.
《Polar Science》2014,8(2):166-182
The larch forests on the permafrost in northeastern Mongolia are located at the southern limit of the Siberian taiga forest, which is one of the key regions for evaluating climate change effects and responses of the forest to climate change. We conducted long-term monitoring of seasonal and interannual variations in hydrometeorological elements, energy, and carbon exchange in a larch forest (48°15′24′′N, 106°51′3′′E, altitude: 1338 m) in northeastern Mongolia from 2010 to 2012. The annual air temperature and precipitation ranged from −0.13 °C to −1.2 °C and from 230 mm to 317 mm. The permafrost was found at a depth of 3 m. The dominant component of the energy budget was the sensible heat flux (H) from October to May (H/available energy [Ra] = 0.46; latent heat flux [LE]/Ra = 0.15), while it was the LE from June to September (H/Ra = 0.28, LE/Ra = 0.52). The annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RE) were −131 to −257 gC m−2 y−1, 681–703 gC m−2 y−1, and 423–571 gC m−2 y−1, respectively. There was a remarkable response of LE and NEE to both vapor pressure deficit and surface soil water content.  相似文献   

3.
Here, the year 2011 characteristics of evapotranspiration and the energy budget of a black spruce forest underlain by permafrost in interior Alaska were explored. Energy balance was nearly closed during summer, and the mean value of the daily energy balance ratio (the ratio of turbulent energy fluxes to available energy) from June to August was 1.00, though a large energy balance deficit was observed in the spring. Such a deficit was explained partly by the energy consumed by snowmelt. Ground heat flux played an important role in the energy balance, explaining 26.5% of net radiation during summer. The mean daily evapotranspiration of this forest during summer was 1.37 mm day?1 – considered typical for boreal forests. The annual evapotranspiration and sublimation yielded 207.3 mm year?1, a value much smaller than the annual precipitation. Sublimation accounted for 8.8% (18.2 mm year?1) of the annual evapotranspiration and sublimation; thus, the sublimation is not negligible in the annual water balance in boreal forests. The daytime average decoupling coefficient was very small, and the mean value was 0.05 during summer. Thus, evapotranspiration from this forest was mostly explained by the component from the dryness of the air, resulting from the aerodynamically rough surface of this forest.  相似文献   

4.
Qinghai spruce (Picea crassifolia) forests play an important role in regulating the regional water balance of the Qilian Mountains in northwestern China. The objective of this study was to estimate evapotranspiration (ET) of the Qinghai spruce forest in the middle section of the Qilian Mountains. A modified Penman-Monteith equation was used to simulate two sub-components of ET: canopy transpiration (Et) and soil evaporation (Es). The third sub-component of ET, canopy interception evaporation (Ei), was directly measured. The results show that the total ET of the Qinghai spruce forest was 313.6 mm during the 2008 growing season (from May 1 to September 30). Ei, Et, and Es were 100.9 mm, 160.8 mm and 51.9 mm, and accounted for 32.2%, 51.3% and 16.5% of the total ET, respectively. The total modeled ET during the 2008 growing season is acceptably consistent with the directly measured ET (298.2 mm) by eddy covariance system. The consistency implies that the modified Penman-Monteith equation is an effective method to estimate ET using conventional meteorological data with additional measurements of net radiation, and the method can thus be applied to similar situations where reliable direct measurements are not practical.  相似文献   

5.
The root system of forest trees account for a significant proportion of the total forest biomass. However, data is particularly limited for forests in permafrost regions. In this study, therefore, we estimated the above- and belowground biomass of a black spruce (Picea mariana) stand underlain with permafrost in interior Alaska. Allometric equations were established using 4–6 sample trees to estimate the biomass of the aboveground parts and the coarse roots (roots >5 mm in diameter) of P. mariana trees. The aboveground biomass of understory plants and the fine-root biomass were estimated by destructive sampling. The aboveground and coarse-root biomasses of the P. mariana trees were estimated to be 3.97 and 2.31 kg m?2, respectively. The aboveground biomass of understory vascular plants such as Ledum groenlandicum and the biomass of forest floor mosses and lichens were 0.10 and 0.62 kg m?2, respectively. The biomass of fine roots <5 mm in diameter was 1.27 kg m?2. Thus, the above- and belowground biomasses of vascular plants in the P. mariana stand were estimated to be 4.07 and 3.58 kg m?2, respectively, indicating that belowground biomass accounted for 47% of the total biomass of vascular plants. Fine-root biomass was 36% of the total root biomass, of which 90% was accumulated in the surface organic layer. Thus, this P. mariana stand can be characterized as having extremely high belowground biomass allocation, which would make it possible to grow on permafrost with limited soil resource availability.  相似文献   

6.
Biological soil crusts cover large areas of the Gurbantunggut Desert in northwestern China where they make a significant contribution to soil stability and fertility. The aim of this study was to quantify the potential nitrogen-fixing activity (NA) of different types of biological soil crusts in the Gurbantunggut Desert. The results suggest that NA (nmol C2H4 m?2 h?1) for each type of crusts was highly variable. Seasonal variation was also important, with all three types of crusts responding in a similar way to changes in environmental conditions. From March to May, NA was relatively low for all crust types. During this season, NA was 2.26 × 103 for cyanobacterial crust followed by lichen crust (6.54 × 102) and moss crust (6.38 × 102). From June to October, all crust types reached their highest level of NA, especially lichen crust and moss crust (p < 0.01). The NA of cyanobacterial crust (9.81 × 103) was higher than that of lichen crust (9.06 × 103) and moss crust (2.03 × 103). From November to February, when temperatures were consistently low (<0 °C), NA was at its lowest level, especially in cyanobacterial crust (4.18 × 102) and moss crust (5.43 × 102) (p < 0.01). Our results indicate that species composition is critical when estimating N inputs in desert ecosystems. In addition, all three types of crusts generally responded in a similar way to environmental conditions. The presence of N fixation activity in all crusts may contribute to the maintenance of fertility in sparsely vegetated areas and provide surrounding vascular plant with fixed nitrogen.  相似文献   

7.
Soil respiration is essential for the understanding of carbon sequestration of forest plantations. Soil respiration of poplar plantations at three developmental stages was investigated in 2007 and 2008. The results showed that mean soil respiration rate was 5.74, 5.10 and 4.71 μmol CO2 m−2 s−1 for stands of 2-, 7- and 12-year-old, respectively, during the growing season. Soil temperature decreased with increasing plantation age and canopy cover. As plantation matured, fine root biomass also declined. Multiple regression analysis suggested that soil temperature in the upper layer could explain 73-77% of the variation in soil respiration and fine root biomass in the upper layer could explain further 5-8%. The seasonal dynamics of soil respiration was mainly controlled by soil temperature rhythm and fine root growth since soil water availability remained adequate due to monthly irrigation. Spatial variability of soil respiration varied considerably among three age classes, with the coefficient of variation of 28.8%, 22.4% and 19.6% for stands of 2-, 7- and 12-year-old, respectively. The results highlight the importance of the development stage in soil carbon budget over a rotation, since both temporal and spatial variation in soil respiration displayed significant differences at different developmental stages.  相似文献   

8.
We investigated the potential of ALOS/PALSAR for estimating the above-ground biomass (AGB) and other biophysical parameters (tree height, diameter at breast height (DBH), and tree stand density) in the boreal forest of Alaska. In July 2007, forest surveys were conducted along a south–north transect (150°W) to profile the ecotone from boreal forest to tundra in Alaska. In situ parameters were measured in 29 forests by a combination of the Bitterlich angle-count sampling method and the sampled-tree measuring method. These in situ values were compared with the backscatter intensity of ALOS/PALSAR. A strong positive logarithmic correlation was found between the backscatter intensity and the forest AGB, with the correlation being stronger in the HV than in the HH polarization mode. No obvious saturation was found in the sensitivity of the HV mode backscatter intensity to the forest AGB up to 120.7 Mg ha?1. Similarly, a robust sensitivity was found in the HV backscatter intensity to both tree height and DBH, but weak sensitivity was observed for tree density. The regression curve of HV backscatter intensity to the forest AGB appeared to be intensified by the uneven forest floor, particularly for forests with small AGB. The geographical distribution of the forest AGB was mapped, demonstrating a generally south-rich and north-poor forest AGB gradient.  相似文献   

9.
《Polar Science》2014,8(3):298-305
Small copepod species play important roles in the pelagic food webs of the Arctic Ocean, linking primary producers to higher trophic levels. The egg production rates (EPs) and weight-specific egg production rates (SEPs) of two common copepods, Acartia longiremis and Temora longicornis, were studied under experimental conditions in Dalnezelenetskaya Bay (southern Barents Sea) during summer. The average EP and SEP at 5–10 °C were 4.7 ± 0.4 eggs female−1 day−1 and 0.025 ± 0.002 day−1, respectively, for A. longiremis and 13.1 ± 0.9 eggs female−1 day−1 and 0.075 ± 0.006 day−1, respectively, for T. longicornis. EP and SEP were significantly higher at 10°C than at 5°C for both species. The mean egg diameter correlated positively and significantly with female prosome length (PL) in each species. SEP of T. longicornis correlated negatively and significantly with PL. Daily EP and SEP were similar to rates recorded for other Acartia and Temora species in temperate and warm regions. The influence of environmental factors (temperature, salinity, and phytoplankton concentration) on EP of both species is discussed. We conclude that temperature is the main factor determining the reproduction rate and timing in A. longiremis and T. longicornis in the Barents Sea.  相似文献   

10.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

11.
Based on the static opaque chamber method,the respiration rates of soil microbial respiration,soil respiration,and ecosystem respiration were measured through continuous in-situ experiments during rapid growth season in semiarid Leymus chinensis steppe in the Xilin River Basin of Inner Mongolia,China. Soil temperature and moisture were the main factor affecting respiration rates. Soil temperature can explain most CO2 efflux variations (R2=0.376-0.655) excluding data of low soil water conditions. Soil moisture can also effectively explain most of the variations of soil and ecosystem respiration (R2=0.314-0.583),but it can not explain much of the variation of microbial respiration (R2=0.063). Low soil water content (≤5%) inhibited CO2 efflux though the soil temperature was high. Rewetting the soil after a long drought resulted in substantial increases in CO2 flux at high temperature. Bi-variable models based on soil temperature at 5 cm depth and soil moisture at 0-10 cm depth can explain about 70% of the variations of CO2 effluxes. The contribution of soil respiration to ecosystem respiration averaged 59.4%,ranging from 47.3% to 72.4%; the contribution of root respiration to soil respiration averaged 20.5%,ranging from 11.7% to 51.7%. The contribution of soil to ecosystem respiration was a little overestimated and root to soil respiration little underestimated because of the increased soil water content that occurred as a result of plant removal.  相似文献   

12.
The purpose of our study was to better understand seed germination ecology of the spring annual short-lived Olimarabidopsis pumila, which grows in the Gurbantonggut Desert, China. Seeds underwent after-ripening at 4, 20 ± 2 (room temperature) and 30 °C. After dormancy was broken, germination capacity was a function of temperature and presence of light. For the temperature range studied (4–30 °C), germination capacity was significantly higher between 15 and 25 °C than at temperatures above or below them. Alternating temperatures of 20/10, 25/10 and 25/15 °C were favorable for germination. Although GA3 did promote dark germination of seeds, GA3 did not replace light for germination. Seeds germinated to >75% if light exposure time was over 8 h and temperature and moisture conditions were favorable. Seeds were able to germinate at relatively low water potentials (83% at ?0.41 MPa), but decreasing water potentials produced detrimental effects on germination percentage and rate. Thus, dormancy characteristics and germination behavior of O. pumila seeds ensure that germination occurs in the desert only when soil moisture conditions are favorable for seedling establishment and survival.  相似文献   

13.
This study was designed to test hypotheses about the combined effects of short-term, seasonal grazing with seasonal drought, fire, and carbon enrichment on soil microarthropod communities in a Chihuahuan Desert grassland. The study was conducted in eighteen 0.5 ha plots following three consecutive years of treatment: six plots intensively grazed in summer, six in winter, and six not grazed. There was no difference in perennial grass cover on the summer-grazed and winter-grazed plots. Intensive seasonal grazing had no effect on the abundance and community composition of soil microarthropods. Within each plot there were six subplots: summer rain-out, winter rain-out, burned, glucose amendment, rain-out control and burn-glucose control. Fire and carbon enrichment had no significant effect on soil microarthropod abundance or community composition. The average number of microarthropods ranged from 8915 ± 1422 m−2 in the ungrazed, unburned plots to 7175 ± 1232 m−2 in the winter-grazed, unburned plots. Microarthropod densities in the glucose-amended plots were 8917 ± 4902 m−2 in the winter-grazed plots and 10,731 ± 863 m−2 in the glucose-amended, summer-grazed subplots.The prostigamatid mite, Tydeus sp., was the most abundant microarthropod taxon in all treatment plots.  相似文献   

14.
Shrubs in semi-arid ecosystems promote micro-environmental variation in a variety of soil properties and site characteristics. However, little is known regarding post-fire seedling performance and its association with environmental variation in former shrub canopy and interspace microsites. We compared post-fire seeding success and various soil properties important for seedling establishment between shrub canopy and interspace microsites in Wyoming big sagebrush (Artemisia tridentata) plant communities in southeast Oregon, U.S.A. We burned 5, 20 × 20 m sites and established paired canopy and interspace micro-transects seeded with bluebunch wheatgrass (Pseudoroegneria spicata, 193 seeds/m) or crested wheatgrass (Agropyron cristatum, 177 seeds/m). At one year post-fire, seedling density was 69% higher (p = 0.012) for crested wheatgrass (compared to bluebunch wheatgrass) and 75% higher (p = 0.019) for interspace microsites (compared to canopy). However, tiller and leaf area production were over twice as high (p < 0.05) in canopy microsites. Soil color and soil temperature, explained 19–32% of variation in seedling performance metrics. Shrub effects on seeding success are complex and interact with abiotic disturbances, but patterns of increased seedling performance in canopy microsites and their relationships to soil variables may suggest tactics for increasing success of restoration practices.  相似文献   

15.
The oxygen isotope ratios of diatoms (δ18Odiatom), and the oxygen and hydrogen isotope ratios of lake water (δW) of lakes in south Alaska provide insight into past changes in atmospheric circulation. Lake water was collected from 31 lakes along an elevation transect and diatoms were isolated from lake sediment from one lake (Mica Lake) in south Alaska. In general, δW values from coastal lakes overlap the global meteoric water line (GMWL). δW values from interior lakes do not lie on the GMWL; they fall on a local evaporation line trajectory suggesting source isotopes are depleted with respect to maritime lakes. Sediment cores were recovered from 58 m depth in Mica Lake (60.96° N, 148.15° W; 100 m asl), an evaporation-insensitive lake in the western Prince William Sound. Thirteen calibrated 14C ages on terrestrial macrofossil samples were used to construct an age-depth model for core MC-2, which spans 9910 cal years. Diatoms from 46, 0.5-cm-thick samples were isolated and analyzed for their oxygen isotope ratios. The analyses employed a newly designed, stepwise fluorination technique, which uses a CO2 laser-ablation system, coupled to a mass spectrometer, and has an external reproducibility of ±0.2‰. δ18Odiatom values from Mica Lake sediment range between 25.2 and 29.8‰. δ18Odiatom values are relatively uniform between 9.6 and 2.6 ka, but exhibit a four-fold increase in variability since 2.6 ka. High-resolution sampling and analyses of the top 100 cm of our lake cores suggest large climate variability during the last 2000 years. The 20th century shows a +4.0‰ increase of δ18Odiatom values. Shifts of δ18Odiatom values are likely not related to changes in diatom taxa or dissolution effects. Late Holocene excursions to lower δ18Odiatom values suggest a reduction of south-to-north storm trajectories delivered by meridional flow, which likely corresponds to prolonged intervals when the Aleutian Low pressure system weakened. Comparisons with isotope records of precipitation (δP) from the region support the storm-track hypothesis, and add to evidence for variability in North Pacific atmospheric circulation during the Holocene.
Zachary SharpEmail:
  相似文献   

16.
Potentilla fruticosa scrub,Kobresia humilis meadow andKobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4 September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2 emission rates from various treatments were 672.09±152.37 mgm-2h-1 for FC (grass treatment); 425.41± 191.99 mgm-2h-1 for FJ (grass exclusion treatment); 280.36±174.83 mgm-2h-1 for FL (grass and roots exclusion treatment); 838.95±237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48±205.67 mgm-2h-1 for GC (grass treatment); 268.97±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore,Kobresia humilis meadow,Potentilla fruticosa scrub meadow andKobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, inKobresia humilis meadow, heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, inPotentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from GG; 49% and 51% from GC. In addition, root respiration fromKobresia humilis meadow approximated 145 mgCO2m-2h-1, contributed 34% to soil respiration. During the experiment period,Kobresia humilis meadow andPotentilla fruticosa scrub meadow had a net carbon fixation of 111.11 gm-2 and 243.89 gm-2, respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission fromKobresia tibetica meadow, and more detailed analyses should be done in further research.  相似文献   

17.
Instantaneous mortality rates of the common planktonic copepod Oithona similis were investigated for the first time in Kola Bay, a region of the Barents Sea that is influenced by freshwater discharge. The rates were estimated in different seasons (December, May, September 2005 and July 2006). A vertical life table approach (VLT) was used to assess mortality. The total abundance of O. similis (copepodites IV and V, and adults) was highest in autumn and lowest in winter. The maximum mortality of O. similis for the stage pair copepodite IV–copepodite V (0.005 ± 0.001 day?1) occurred in December 2005, while the highest mortality rates for the pairs copepodite VM–adult male (0.453 ± 0.026 day?1) and copepodite VF–adult female (0.228 ± 0.006 day?1) occurred in summer 2006. Simple regression analyses showed that the total abundance of each stage and the mortality rates were positively significantly correlated with water temperature. The mortality rates for the stage pairs copepodite VM–adult male and copepodite VF–adult female were positively significantly correlated with chlorophyll a concentration. The abundance and mortality rate of O. similis in each season was determined by life cycle factors, and possibly by the dynamics of its food resources and potential predators.  相似文献   

18.
In hot, arid environments, non-burrowing mammals are at risk of overheating and dehydration, so human-induced reduction in thermal cover may constitute a threat for their survival. We studied the daytime activity rhythm, habitat use, and space use of the beira (Dorcatragus megalotis), a threatened antelope living in arid hills of the Horn of Africa, where tree cover is shrinking because of logging, and overgrazing by livestock. During the cool season (Nov.–Mar.; mean midday temperature: 28.5 °C), beira did not particularly seek shade, and alternated in the course of the day between short phases of activity and rest (median duration in Dec.–Feb.: 57.5 and 42.5 min, respectively). In contrast, during the hot season (May–Sep.; mean midday temperature: 39.1 °C), beira often foraged in a hill's shade, and midday resting phases were especially long (median duration in May–Jul.: 280 min) and spent in the shade of trees, or of rock shelters when available in the home range. Because of reduced diurnal movements when temperature was high, beira home ranges were smaller during the hot than during the cool season (mean ± SE: 0.25 ± 0.05 km2 in May–Jul. vs 0.42 ± 0.10 km2 in Dec.–Feb.). Whatever the season, beira mainly used areas supporting trees. The obtained results suggest that the decrease of tree cover in the areas inhabited by the beira constitutes a threat for the species survival.  相似文献   

19.
Land degradation and global warming are currently highly active research topics. Land degradation can both change land cover and surface climate and significantly influence atmospheric circulation. Researches have verified that carbon dioxide (CO2) and methane (CH4) are major greenhouse gases (GHG) in the atmosphere and are directly affected by human activity. However, to date, there is no research on the spatial distribution of GHG concentrations and also no research on how land degradations affect GHG concentrations in arid and semi-arid regions. In this study, we used GHG data from the ENVIronment SATellite (ENVISAT) and the Greenhouse gases Observing Satellite (GOSAT), the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data from the MODerate resolution Imaging Spectroradiometer (MODIS) and precipitation data from ground stations to analyze the way land degradation affects GHG concentrations in northern China and Mongolia, which exhibit the most serious land degradation process in East Asia. Our research revealed that the CO2 and CH4 concentrations (XCO2 and XCH4) increased from 2003 to 2009 and then decreased into 2011. We used geostatistics to predict and simulate the spatial distribution of XCO2 and XCH4 and found that the distribution of XCO2 displays a seasonal trend and is primarily affected by plant photosynthesis, soil respiration and precipitation. As the distribution of XCH4 is mainly affected by the sources' distribution, microbial processes, LST and submarine hydrate, the CH4 concentration presents no obvious seasonal changes and the high XCH4 values are primarily found in northeast and southeast China. Land degradation increases the concentration of GHG: the correlation coefficient between NDVI and XCO2 is R2 = 0.76 (P < 0.01) and the value between NDVI and XCH4 is R2 = 0.75 (P < 0.01).  相似文献   

20.
The distribution pattern of the trace elements Rb, Sr, Nd and Sm for Yamato 984028 (Y984028) is consistent with its classification as a lherzolitic shergottite. The Sm–Nd mineral isochron of this lherzolitic shergottite defines its age to be 170 ± 10 Ma for an initial ?Nd = +11.6 ± 0.2. The corresponding Rb–Sr mineral isochron yields an identical age of 170 ± 9 Ma and an initial 87Sr/86Sr = 0.710389 ± 0.000029. The concordant Sm–Nd and Rb–Sr isochron ages suggest that Y984028 crystallized 170 ± 7 Ma ago contemporaneously with five other lherzolitic shergottites and ten enriched basaltic and olivine-phyric shergottites. The age, Sr- and Nd- isotopic signatures further suggest that Y984028 and Y-793605, and also probably Y000097 could come from a single magmatic body. Using a two-stage evolution model, the time-averaged 87Rb/86Sr-ratio for the mantle source of the parent magma of Y984028 is ~0.182, within the range of 0.178–0.182 that has been reported for other lherzolitic shergottites. The corresponding time-averaged 147Sm/144Nd-ratio for the source mantle of its parent magma is super-chondritic at ~0.217, implying its source was a depleted mafic part of the Martian mantle similar to that of diabasic shergottite Northwest Africa (NWA) 1460. Rb, Sr, Sm and Nd distributions in Y984028 are likely produced by pyroxene and olivine accumulation, probably from a NWA 1460-like parental melt, in an intrusive magma body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号