首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Distributioncharacteristicsofplanktonicnano-andmicroalgaeinthePrydzBayanditsadjacentSouthernIndianOcean,duringaustralsummerZh...  相似文献   

2.
ThedistributionandstandingcropsofAntarctickrilinthePrydzBayregionduringtheaustralsummerof1991/1992and1992/1993ChenXuezhong(陈雪...  相似文献   

3.
Time-series observations of chaetognaths were carried out during four cruises along the 140°E transect between 61°S and 66°28′S from November to March in the 2001/02 austral summer. Three species – Eukrohnia hamata, Sagitta gazellae and Sagitta marri – occurred in the samples between 0 and 150 m. E. hamata was the most dominant species comprising between 89.6 and 100% of the chaetognath population, followed by S. gazellae (0–5.7%). There were large differences in the abundance and size frequency distribution of body length of E. hamata between the north and south of the Southern Boundary of the Antarctic Circumpolar Current (SB-ACC) which was located between 64°S and 65°S. For E. hamata, low abundance and large sized animals (22–24 mm) occurred south of the SB-ACC. A possible reason could be that the breeding season in waters north of the SB-ACC may be early spring and summer. On the other hand, low reproduction was recognized by low the abundance of E. hamata and few occurrences of juveniles south of the SB-ACC (65°S). The result of a general comparison suggests that the abundance of chaetognaths along the 140°E transect has decreased during the 20 years since 1983.  相似文献   

4.
1 Introduction The Tibetan Plateau is gigantic in extent and has the highest elevation and the most complex topography in the world. Its existence is of important significance for the formation of atmospheric circulation, weather and climate in China, much of Asia and even of the globe. Therefore, great attention is given to it. The analyses show that the influencing range of the Tibetan Plateau is the widest during the summer[1]. The powerful updrafts from the plateau warm low flow towar…  相似文献   

5.
刘会莲  孙松  吉鹏 《极地研究》2002,13(2):117-128
Antarctic krill (Euphausia superba) were collected from the Prydz Bay region during the austral summer of 1999/2000. The sample - collection was made at 15 sites in 3 longitudinal transects. Although krill were encountered at 14 sites, the abundance was comparatively low in general. The main component of the krill population was of post -larval stages. The mean numerical and weight density of krill integrated for all sampling stations in the survey area were 16. 17 ind. 1000 m -3and 12.02 g 1000 m -3 , respectively. In the survey area, stations with larger krill density are mainly located in the slope zone, except that the largest sample was collected in the open sea zone. No krill occurred in the only station of the shelf zone during our investigation. Krill collected from the slope zone were under better growth condition than those from the open sea zone, but when the survey area is considered as a whole, the growth condition is normal. The results of the comprehensive analysis of the environmental fa  相似文献   

6.
Modelling spatio-temporal dependencies resulting from dynamic processes that evolve in both space and time is essential in many scientific fields. Spatio-temporal Kriging is one of the space–time procedures, which has progressed the most over the last few years. Kriging predictions strongly depend on the covariance function associated with the stochastic process under study. Therefore, the choice of such a covariance function, which is usually based on empirical covariance, is a core aspect in the prediction procedure. As the empirical covariance is not necessarily a permissible covariance function, it is necessary to fit a valid covariance model. Due to the complexity of these valid models in the spatio-temporal case, visualising them is of great help, at least when selecting the set of candidate models to represent the spatio-temporal dependencies suggested by the empirical covariogram. We focus on the visualisation of the most interesting stationary non-separable covariance functions and how they change as their main parameters take different values. We wrote a specialised code for visualisation purposes. In order to illustrate the usefulness of visualisation when choosing the appropriate non-separable spatio-temporal covariance model, we focus on an important pollution problem, namely the levels of carbon monoxide, in the city of Madrid, Spain.  相似文献   

7.
Changes in microfossils (diatoms, chrysophytes, chironomids and cladocera remains), geochemistry and deposition of atmospheric pollutants have been investigated in the sediment records of the alpine lake Gossenköllesee (Tyrol, Austria) spanning the last two centuries. The sediment records were compared with seasonal and annual air temperature trends calculated for the elevation (2417 m a.s.l.) and the geographical position (47° 1346N, 11° 0051E) of the lake, and with precipitation records available since 1866 from Innsbruck. Temperature trends followed a 20–30 year oscillation between cold and warm periods. Regarding long-term changes, temperature trends showed a U-shaped trend between 1780 and 1950, followed by a steep increase since 1975.Physical, geochemical, and organic parameters were not controlled by air temperature. Among the biological records only diatoms and chrysophytes reacted to air temperature changes: the relative abundance of planktonic diatoms increased during warm periods and changes in mean annual alpine air temperature explained 36.5% of their variation. The relation between abundance of seasonal stomatocyst types and air temperature varied on two different time scales: while summer stomatocysts were influenced by short term temperature fluctuations, the autumn stomatocysts were affected only by the long term changes. Other biological parameters exhibited a constant species composition (chironomids, pigments) or changes were small and independent of temperature (cladocera). Spheroidal carbonaceous fly-ash particles, and trends in Pb and Cr indicated increasing deposition of atmospheric pollutants but had no detectable effects on the biological parameters either. In respect to temperature variations over the last 200 years, this alpine lake is much less sensitive than expected and has thus to be regarded as a well buffered site. However, temperature alone is not sufficient to understand changes in species composition and other biogeochemical processes with unknown historical patterns might have affected species composition more strongly.  相似文献   

8.
In arid ecosystems, widely spaced vegetation and prolonged dry periods may enhance canopy capture of nutrients from dry deposition. Additionally, differences in precipitation type, plant canopy architecture, and soil nutrient limitation could affect canopy exchange of atmospherically derived nutrients. We collected bulk precipitation and throughfall underneath piñon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma) along a substrate age gradient to determine if canopy interception or throughfall chemistry differed among tree species, season, or substrate age. The Substrate Age Gradient of Arizona consists of four sites with substrate ages ranging from 1 ky to 3000 ky-old, which exhibit classic variations in soil nitrogen (N) and phosphorus (P) availability with substrate age. Greater nutrient inputs below canopies than in intercanopy areas suggest throughfall contributes to the “islands of fertility” effect. Canopy interception of precipitation did not differ between tree species, but was greater in the summer/fall than winter/spring. We found that net canopy retention of atmospherically derived N was generally greater when N availability in the soil was low, but retention also occurred when N availability was relatively high. Taken together, our results were inconclusive in determining whether the degree of soil nutrient limitation alters canopy exchange of plant growth-limiting nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号