首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polar Science》2014,8(2):196-206
Droppings of Svalbard reindeer (Rangifer tarandus platyrhynchus) could affect the carbon and nitrogen cycles in tundra ecosystems. The aim of this study was to evaluate the potential of reindeer droppings originating from the winter diet for emission and/or absorption of methane (CH4) and nitrous oxide (N2O) in summer. An incubation experiment was conducted over 14 days using reindeer droppings and mineral subsoil collected from a mound near Ny-Ålesund, Svalbard, to determine the potential exchanges of CH4 and N2O for combinations of two factors, reindeer droppings (presence or absence) and soil moisture (dry, moderate, or wet). A line transect survey was conducted to determine the distribution density of winter droppings at the study site. The incubation experiment showed a weak absorption of CH4 and a weak emission of N2O. Reindeer droppings originating from the winter diet had a negligible effect on the exchange fluxes of both CH4 and N2O. Although the presence of droppings resulted in a short-lasting increase in N2O emissions on day 1 (24 h from the start) for moderate and wet conditions, the emission rates were still very small, up to 3 μg N2O m−2 h−1.  相似文献   

2.
崇明东滩湿地CO2 、CH4和N2O 排放的时空差异   总被引:10,自引:0,他引:10  
汪青  刘敏  侯立军  程书波 《地理研究》2010,29(5):935-946
通过静态暗箱—气相色谱法研究了长江口崇明东滩四类典型湿地(围垦湿地、高潮滩、中潮滩和低潮滩)CO2、CH4和N2O排放特征及影响因素。结果表明,在生长季尺度下,CO2、CH4和N2O均以排放为主;在昼夜尺度下,CO2和CH4在夜间排放量大于白昼排放量,而N2O的排放高峰出现在下午;在潮水退去、潮滩暴露初期,CH4和N2O有大量排放,CO2正好相反。崇明东滩温室气体排放通量自岸向海有明显的梯度变化,总体趋势是越近岸通量值越大。观测与实验表明,温度、潮汐、土壤理化性质、植物和土地利用变化都对温室气体排放通量有明显的影响,其中滨海潮滩湿地特有环境因子潮汐以"淹没—暴露"光滩沉积物的方式控制温室气体的排放。  相似文献   

3.
The main objective of our study was to provide consistent information on land cover changes between the years 1990 and 2010 for the Cerrado and Caatinga Brazilian seasonal biomes. These areas have been overlooked in terms of land cover change assessment if compared with efforts in monitoring the Amazon rain forest. For each of the target years (1990, 2000 and 2010) land cover information was obtained through an object-based classification approach for 243 sample units (10  km × 10  km size), using (E)TM Landsat images systematically located at each full degree confluence of latitude and longitude. The images were automatically pre-processed, segmented and labelled according to the following legend: Tree Cover (TC), Tree Cover Mosaic (TCM), Other Wooded Land (OWL), Other Land Cover (OLC) and Water (W). Our results indicate the Cerrado and Caatinga biomes lost (gross loss) respectively 265,595 km2 and 89,656 km2 of natural vegetation (TC + OWL) between 1990 and 2010. In the same period, these areas also experienced gain of TC and OWL. By 2010, the percentage of natural vegetation cover remaining in the Cerrado was 47% and in the Caatinga 63%. The annual (net) rate of natural vegetation cover loss in the Cerrado slowed down from −0.79% yr−1 to −0.44% yr−1 from the 1990s to the 2000s, while in the Caatinga for the same periods the rate increased from −0.19% yr−1 to −0.44% yr−1. In summary, these Brazilian biomes experienced both loss and gains of Tree Cover and Other Wooded Land; however a continued net loss of natural vegetation was observed for both biomes between 1990 and 2010. The average annual rate of change in this period was higher in the Cerrado (−0.6% yr−1) than in the Caatinga (−0.3% yr−1).  相似文献   

4.
This study was performed at three eutrophic rivers in Southeast China aiming to determine the magnitude and patterns of dissolved N2O concentrations and fluxes over a seasonal (in 2009) and diurnal (24 h) temporal scale.The results showed that N2O concentrations varied from 0.28 to 0.38 (mean 0.32±0.04),0.29 to 0.46 (mean 0.37±0.07),and 2.07 to 3.47 (mean 2.84±0.63) μg N-N2O L-1 in the Fengle,Hangbu and Nanfei rivers,respectively,in the diurnal study performed during the summer of 2008.The study found that mean N2O concentration and estimated N2O flux (67.89 ± 6.71 μg N-N2O m-2 h-1) measured from the Nanfei River with serious urban wastewater pollution was significantly higher than those from the Fengle and the Hangbu Rivers with agricultural runoff.In addition,the seasonal study during June and December of 2009 also showed that the mean N2O concentration (10.59±14.67 μg N-N2O L-1) and flux (236.87±449.74 μg N-N2O m-2 h-1) observed from the Nanfei River were significantly higher than those from the other two rivers.Our study demonstrated both N2O concentrations and fluxes exhibited seasonal and diurnal fluctuations.Over three consecutive days during the summer of 2008,N2O accumulation rates varied within the range of 3.91-7.21,2.76-15.71,and 3.23-30.03 μg N-N2O m-2 h-1 for the Fengle,Hangbu and Nanfei Rivers,respectively,and exponentially decreased with time.  相似文献   

5.
The objective of this research was to study the relationships between environmental factors and vegetation in order to find the most effective factors in the separation of the vegetation types in Poshtkou rangelands of Yazd province. Sampling of soil and vegetation were performed with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrat, and using the two-way indicator species analysis (TWINSPAN), and vegetation was classified into different groups. The topographic conditions were recorded in quadrat locations. Soil samples were taken in 0–30 and 30–60 cm depths in each quadrat. The measured soil variables included texture, lime, saturation moisture, gypsum, acidity (pH), electrical conductivity, sodium absorption ratio, and soluble ions (Na+, K+, Mg2+, Cl, CO32−, HCO3 and SO42−). Multivariate techniques including principal component analysis (PCA) and canonical correspondence analysis (CCA) were used to analyse the collected data. The results showed that the vegetation distribution pattern was mainly related to soil characteristics such as salinity, texture, soluble potassium, gypsum, and lime. Totally, considering the habitat conditions, ecological needs and tolerance range each plant species has a significant relation with soil properties.  相似文献   

6.
In this article we evaluate the potential use of Cladonia foliacea tissue N content, C:N ratio, and phosphomonoesterase (PME) activity as biomarkers of N deposition by means of a field experiment. In order to do this, we continuously added NH4NO3 to a semi-arid shrubland at four rates: 0, 10, 20 and 50 kg N ha−1 yr−1 starting in October 2007. Tissue N content and C:N ratios, considered as N stress indicators, significantly increased and decreased, respectively, after 1.5 years. The response found suggests N saturation above 20 kg N ha−1 yr−1. After 2.5 years, extracellular PME activity increased with 20 kg N ha−1 yr−1 and this was attributed to an induced nutritional (N to P) imbalance. Above this threshold, PME significantly decreased as a consequence of the physiological stress caused by extra N. Effects on PME were dependent on the soil properties (pH and Ca and Mg availability) experienced by C. foliacea. PME response suggests a critical load of ∼26.4 kg N ha−1 yr−1 (20 kg N ha−1 yr−1 + background) for this lichen. Further tissue chemistry and PME evaluations in C. foliacea and soil surveys conducted along wide N deposition gradients will confirm the potential use of this species as a biomonitor of N pollution and the importance of soil properties on its ability to respond to atmospheric reactive N.  相似文献   

7.
《Polar Science》2014,8(3):218-231
To investigate the dynamics and environmental drivers of CO2 flux through the winter snowpack in a dwarf bamboo ecosystem (Hokkaido, northeast Japan), we constructed an automated sampling system to measured CO2 concentrations at five different levels in the snowpack, from the base to the upper snow surface. Using a gas diffusion approach, we estimated an average apparent soil CO2 flux of 0.26 μmol m−2 s−1 during the snow season (December–April); temporally, the CO2 flux increased until mid-snow season, but showed no clear trend thereafter; late-season snow-melting events resulted in rapid decreases in apparent CO2 flux values. Air temperature and subnivean CO2 flux exhibited a positive linear relationship. After eliminating the effects of wind pumping, we estimated the actual soil CO2 flux (0.41 μmol m−2 s−1) to be 54% larger than the apparent flux. This study provides new constraints on snow-season carbon emissions in a dwarf bamboo ecosystem in northeast Asia.  相似文献   

8.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

9.
Cactus seedlings often establish under nurse plants which modify environmental conditions by increasing moisture and decreasing solar radiation, which may cause beneficial and detrimental effects, respectively, on seedling growth. Three soil moisture treatments (5%, 25% and 60%) and two solar radiation levels (100% exposure=243 μmol m−2 s−1, and 40%=102 μmol m−2 s−1) were used in a factorial design to analyze seedling growth response of three rare cactus species (Mammillaria pectinifera, Obregonia denegrii and Coryphantha werdermannii). The variables evaluated were relative growth rate (RGR), root/shoot ratio (R/S), and K (RGRroots/RGRshoot), obtained from an initial seedling harvest (6-month-old seedlings) and a final harvest 6 months after treatment application. All three species had slow RGRs (0.002–0.012 g g−1 day−1). O. denegrii had the lowest RGR values, but was the only species for which R/S and K varied with soil moisture. While all seedlings responded markedly to soil moisture, no response was observed to radiation treatments. The latter might have been related to the relatively low solar radiation levels present in the greenhouse. Yet, our results suggest that the main benefit nurse plants offer to seedlings is the increase in soil moisture.  相似文献   

10.
In the Ethiopian highlands, remarkable recovery of vegetation has been achieved using exclosures, protecting vegetation against livestock browsing and firewood harvesting. But these emerging forest resources require tools for sustainable use, implying knowledge on biomass stocks and growth. In this study we developed biomass functions estimating total, stem and branch biomass from diameter at stump height (DSH) and tree height (H) for an 11-year old exclosure in Tigray, Ethiopia. In a systematic grid of 55 plots, DSH and H of all trees and shrubs were recorded. 40 Acacia abyssinica trees were selected for destructive sampling. Allometric relationships using a natural log–log model were established between aboveground biomass, DSH and H. Models with only DSH were found best with R2 between 0.95 and 0.98. The functions were 10 fold cross-validated and R2_cv ranged from 0.94 to 0.97, indicating good model performance. The models were found well in range with those of other seasonal forests in East Africa. Total aboveground biomass was estimated 25.4 ton ha−1 with an annual production of 2.3 ton ha−1, allowing sustainable wood fuel use for 4 persons ha−1. The presented predictive functions help to harmonize between ecological and societal objectives and are as such a first step towards an integrated planning tool for exclosures.  相似文献   

11.
三江平原湿地CH4、N2O的地-气交换特征   总被引:11,自引:0,他引:11  
利用暗箱-气相色谱法对三江平原3种具有代表性的湿地类型(常年积水的毛果苔草沼泽、季节性积水的小叶章湿草甸和灌丛湿地)进行了为期两年的CH4和N2O现场同步观测。结果表明,湿地全年CH4和N2O通量有明显的季节和年际变化,与温度和土壤水分条件密切相关。在发生季节性干旱的年份,生长季(5月10月)CH4排放通量峰值出现在6月和8月,呈双峰型;而在降水充沛的年份,CH4排放通量峰值出现在6、7月份,呈单峰型。冰冻期(11月到次年4月)CH4排放通量十分的微弱,其中灌丛湿地表现为负排放。3种类型湿地N2O通量一般在非冰冻期表现为排放,呈双峰型,5月份融化期为第一个高峰期,7、8月为第二个高峰期,冰雪覆盖期表现为吸收。湿地CH4和N2O通量在春季的融冻期,存在此消彼长的现象。  相似文献   

12.
Nitrous oxide(N_2 O) is one of the most important greenhouse gases in the atmosphere; freeze–thaw cycles(FTCs) might strongly influence the emission of soil N_2 O on the Qinghai–Tibetan Plateau(QTP). However, there is a lack of in situ research on the characteristics of soil N_2 O concentration and flux in response to variations in soil properties caused by FTCs.Here, we report the effect of FTC-induced changes in soil properties on the soil N_2 O concentration and flux in the permafrost region of the higher reaches of the Shule River Basin on the northeastern margin of the QTP. We measured chemical properties of the topsoil, activities of soil microorganisms, and air temperature(AT), as well as soil N_2 O concentration and flux, over an annual cycle from July 31, 2011, to July 30, 2012. The results showed that soil N_2 O concentration was significantly affected by soil temperature(ST), soil moisture(SM), soil salinity(SS), soil polyphenol oxidase(SPO), soil alkaline phosphatase(SAP), and soil culturable actinomycetes(SCA), ranked as SMSSSTSPOSAPSCA, whereas ST significantly increased soil N_2 O flux, compared with SS. Overall, our study indicated that the soil N_2 O concentration and flux in permafrost zone FTCs were strongly affected by soil properties, especially soil moisture, soil salinity, and soil temperature.  相似文献   

13.
Africa is a sink of carbon, but there are large gaps in our knowledge regarding the CO2 exchange fluxes for many African ecosystems. Here, we analyse multi-annual eddy covariance data of CO2 exchange fluxes for a grazed Sahelian semi-arid savanna ecosystem in Senegal, West Africa. The aim of the study is to investigate the high CO2 exchange fluxes measured at the peak of the rainy season at the Dahra field site: gross primary productivity and ecosystem respiration peaked at values up to ?48 μmol CO2 m?2 s?1 and 20 μmol CO2 m?2 s?1, respectively. Possible explanations for such high fluxes include a combination of moderately dense herbaceous C4 ground vegetation, high soil nutrient availability and a grazing pressure increasing the fluxes. Even though the peak net CO2 uptake was high, the annual budget of ?229 ± 7 ± 49 g C m?2 y?1 (±random errors ± systematic errors) is comparable to that of other semi-arid savanna sites due the short length of the rainy season. An inter-comparison between the open-path and a closed-path infrared sensor indicated no systematic errors related to the instrumentation. An uncertainty analysis of long-term NEE budgets indicated that corrections for air density fluctuations were the largest error source (11.3% out of 24.3% uncertainty). Soil organic carbon data indicated a substantial increase in the soil organic carbon pool for the uppermost .20 m. These findings have large implications for the perception of the carbon sink/source of Sahelian ecosystems and its response to climate change.  相似文献   

14.
In arid and semi-arid areas, woody encroachment is the increase in density, cover, extent and/or biomass of woody plants. Woody encroachment is often associated with increased runoff and soil erosion. Hydrological and erosional responses of woody encroachment and of pastures established after management of encroachment in semi-arid Australia are not well understood. This study compared the hydrological and erosional responses across vegetation states comprising woody plant encroachment (>1200 stems ha−1), recently established pastures (<23 years of age), long-established pasture (50-100 years of age) and open woodland (<330 stems ha−1) in semi-arid eastern Australia. Responses were measured using rainfall simulation with intensity of 35 mm h−1 for 30 min applied on 1 -m2 plots. Runoff and sediment production did not differ significantly between vegetation states. Average runoff in woody encroachment was 9.0 mm h−1, followed by recent pasture (8.2 mm h−1), long-established pasture (5.9 mm h−1) and open woodland (4.2 mm h−1). Total sediment production in recent pasture was 11.6 g m−2, followed by woody encroachment (9.0 g m−2), long-established pasture (7.3 g m−2) and open woodland (4.3 g m−2). Runoff and sediment production were significantly lower at one pasture site (0.9 mm h−1 and 1.3 g m−2) where rotational grazing and minimum tillage had been implemented than in the adjacent paired woody encroachment site (10.3 mm h−1and 6.5 g m−2, respectively). This example of a pasture that had been managed to increase ground cover illustrated the effect of pasture management on reducing runoff and sediment production. Across all vegetation states, small scale runoff and sediment production were minimal or zero where total ground cover was 73% or higher.  相似文献   

15.
Tamarix spp. (saltcedar) secretes salts and has been considered to be a major factor contributing to the salinization of river terraces in western US riparian zones. However, salinization can also occur from the capillary rise of salts from the aquifer into the vadose zone. We investigated the roles of saltcedar and physical factors in salinizing the soil profile of a non-flooding terrace at sites on the Cibola National Wildlife Refuge on the Lower Colorado River, USA. We placed salt traps under and between saltcedar shrubs and estimated the annual deposition rate of salts from saltcedar. These were then compared to the quantities and distribution on of salts in the soil profile. Dense stands of saltcedar deposited 0.159 kg m−2 yr−1 of salts to the soil surface. If this rate was constant since seasonal flooding ceased in 1938 and all of the salts were retained in the soil profile, they could account for 11.4 kg m−2 of salt, about 30% of total salts in the profile today. Eliminating saltcedar would not necessarily reduce salts, because vegetation reduces the upward migration of salts in bulk flow from the aquifer. The densest saltcedar stand had the lowest salt levels in the vadose zone in this study.  相似文献   

16.
In this paper, we investigate spatial variations in soil CO2 efflux and carbon dynamics across five sites located between 65.5°N and 69.0°N in tundra and boreal forest biomes of Alaska. Growing and winter mean CO2 effluxes for the period 2006–2010 were 261 ± 124 (Coefficients of Variation: 48%) and 71 ± 42 (CV: 59%) gCO2/m2, respectively. This indicates that winter CO2 efflux contributed 24% of the annual CO2 efflux over the period of measurement. In tundra and boreal biomes, tussock is an important source of carbon efflux to the atmosphere, and contributes 3.4 times more than other vegetation types. To ensure that representativeness of soil CO2 efflux was determined, 36 sample points were used at each site during the growing season, so that the experimental mean fell within ±20% of the full sample mean at 80% and 90% confidence levels. We found that soil CO2 efflux was directly proportional to the seasonal mean soil temperature, but inversely proportional to the seasonal mean soil moisture level, rather than to the elevation-corrected July air temperature. This suggests that the seasonal mean soil temperature is the dominant control on the latitudinal distribution of soil CO2 efflux in the high-latitude ecosystems of Alaska.  相似文献   

17.
Pinyon and juniper have been expanding into sagebrush (Artemisia tridentata) ecosystems since settlement of the Great Basin around 1860. Herbaceous understory vegetation is eliminated as stand densities increase and the potential for catastrophic fires increases. Prescribed fire is increasingly used to remove trees and promote recovery of sagebrush ecosystems. We quantified the effects of prescribed fire, vegetation type, and time following fire on soil KCl extractable nitrogen and NaHCO3 extractable phosphorus in a pinyon–juniper woodland and its associated sagebrush ecosystem immediately before and for 4 years after a spring prescribed burn. Potassium chloride extractable NH4+ and total inorganic-N increased immediately following prescribed fire, and extractable NO3 decreased immediately after the burn. In the surface layer (top 8 cm), extractable NH4+ remained elevated compared to the control through year 2 after the burn. By the first fall post-burn extractable NO3 and total extractable inorganic-N increased and remained elevated over the control through year 3 after the burn in the surface layer. For the entire soil profile (52 cm), the burn had no effect on NH4+, and the effects on total extractable inorganic-N were no longer significant after year 1. However, NO3 remained elevated over the control through year 2 post-fire for the soil profile. Near surface NaHCO3 extractable ortho-P increased immediately following fire, and remained elevated through year 2 post-fire. No fire effects were observed for extractable ortho-P in deeper horizons. Our data show that plant available nitrogen can remain elevated for extended periods following prescribed fire. This can influence regrowth and seedling establishment of native plant species, invasion of exotic plant species and, ultimately, site recovery potential.  相似文献   

18.
Land degradation and global warming are currently highly active research topics. Land degradation can both change land cover and surface climate and significantly influence atmospheric circulation. Researches have verified that carbon dioxide (CO2) and methane (CH4) are major greenhouse gases (GHG) in the atmosphere and are directly affected by human activity. However, to date, there is no research on the spatial distribution of GHG concentrations and also no research on how land degradations affect GHG concentrations in arid and semi-arid regions. In this study, we used GHG data from the ENVIronment SATellite (ENVISAT) and the Greenhouse gases Observing Satellite (GOSAT), the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data from the MODerate resolution Imaging Spectroradiometer (MODIS) and precipitation data from ground stations to analyze the way land degradation affects GHG concentrations in northern China and Mongolia, which exhibit the most serious land degradation process in East Asia. Our research revealed that the CO2 and CH4 concentrations (XCO2 and XCH4) increased from 2003 to 2009 and then decreased into 2011. We used geostatistics to predict and simulate the spatial distribution of XCO2 and XCH4 and found that the distribution of XCO2 displays a seasonal trend and is primarily affected by plant photosynthesis, soil respiration and precipitation. As the distribution of XCH4 is mainly affected by the sources' distribution, microbial processes, LST and submarine hydrate, the CH4 concentration presents no obvious seasonal changes and the high XCH4 values are primarily found in northeast and southeast China. Land degradation increases the concentration of GHG: the correlation coefficient between NDVI and XCO2 is R2 = 0.76 (P < 0.01) and the value between NDVI and XCH4 is R2 = 0.75 (P < 0.01).  相似文献   

19.
《Polar Science》2014,8(2):166-182
The larch forests on the permafrost in northeastern Mongolia are located at the southern limit of the Siberian taiga forest, which is one of the key regions for evaluating climate change effects and responses of the forest to climate change. We conducted long-term monitoring of seasonal and interannual variations in hydrometeorological elements, energy, and carbon exchange in a larch forest (48°15′24′′N, 106°51′3′′E, altitude: 1338 m) in northeastern Mongolia from 2010 to 2012. The annual air temperature and precipitation ranged from −0.13 °C to −1.2 °C and from 230 mm to 317 mm. The permafrost was found at a depth of 3 m. The dominant component of the energy budget was the sensible heat flux (H) from October to May (H/available energy [Ra] = 0.46; latent heat flux [LE]/Ra = 0.15), while it was the LE from June to September (H/Ra = 0.28, LE/Ra = 0.52). The annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RE) were −131 to −257 gC m−2 y−1, 681–703 gC m−2 y−1, and 423–571 gC m−2 y−1, respectively. There was a remarkable response of LE and NEE to both vapor pressure deficit and surface soil water content.  相似文献   

20.
Aboveground biomass in Tibetan grasslands   总被引:2,自引:0,他引:2  
This study investigated spatial patterns and environmental controls of aboveground biomass (AGB) in alpine grasslands on the Tibetan Plateau by integrating AGB data collected from 135 sites during 2001–2004 and concurrent enhanced vegetation index derived from MODIS data sets. The AGB was estimated at 68.8 g m?2, with a larger value (90.8 g m?2) in alpine meadow than in alpine steppe (50.1 g m?2). It increased with growing season precipitation (GSP), but did not show a significant overall trend with growing season temperature (GST) although it was negatively correlated with GST at dry environments (<200 mm of GSP). Soil texture also influenced AGB, but the effect was coupled with precipitation; increased silt content caused a decrease of AGB at small GSP, and generated a meaningful increase under humid conditions. The correlation between AGB and sand content indicated an opposite trend with that between AGB and silt content. An analysis of general linear model depicted that precipitation, temperature, and soil texture together explained 54.2% of total variance in AGB. Our results suggest that moisture availability is a critical control of plant production, but temperature and soil texture also affect vegetation growth in high-altitude regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号