首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A 10-months long monitoring experiment to investigate the diurnal and seasonal variation of aerosol size distribution at Nagarkot (1,900 m asl) in the Kathmadu Valley was carried out as part of a study on katabatic and anabatic influence on pollution dispersion mechanisms. Seasonal means show total aerosol number concentration was highest during post-monsoon season (775 ± 417 cm?3) followed by pre-monsoon (644 ± 429 cm?3) and monsoon (293 ± 205 cm?3) periods. Fine particle concentration (0.25 μm ≤ DP ≤ 2.5 μm) dominated in all seasons, however, contribution by coarse particles (3.0 μm ≤ DP ≤ 10.0 μm) is more significant in the monsoon season with contributions from particles larger than 10.0 μm being negligible. Our results show a regular diurnal pattern of aerosol concentration in the valley with a morning and an evening peak. The daily twin peaks are attributed to calm conditions followed by transitional growth and break down of the valley boundary layer below. The peaks are generally associated with enhancement of the coarse particle fraction. The evening peak is generally higher than the morning peak, and is caused by fresh evening pollution from the valley associated with increased local activities coupled with recirculation of these trapped pollutants. Relatively clean air masses from neighbouring valleys contribute to the smaller morning peak. Gap flows through the western passes of the Kathmandu Valley, which sweep away the valley pollutants towards the eastern passes modulated by the mountain - valley wind system, are mainly responsible for the dominant pollutant circulation patterns exhibited within the valley.  相似文献   

3.
As part of the 2nd A erosol C haracterisation E xperiment (ACE‐2), conducted during summer 1997 in the North Atlantic region between the Canary Islands and Portugal, we measured aerosol optical depths (AOD) at a mid‐tropospheric site, near the top of the volcanic mountain "El Teide"(28°16'N, 16°36' W, 3570 m asl). Our instrument was located at the highest altitude in a network of sunphotometers that extended down to sea level. Clear conditions dominated the ACE‐2 period, and, although suggested by back‐trajectories at 300 hPa, no evidence of anthropogenic pollution was found in our data. Three distinct dust episodes were observed. Vertical soundings and back trajectories suggested mineral dust from the Sahel region as a source. During these episodes, AOD increased an order of magnitude with respect to background conditions (from 0.017 up to 0.19 at λ=500 nm). A shift towards neutrality of the extinction spectral dependence (Ångstrom exponent α down to 0.13), indicated that the coarse mode (particle diameter >2 μm) dominated the aerosol size distribution. For 6 days during the episodes of mineral dust, a monomodal size distribution between 2 and 20 μm diameter was obtained from Mie based size distribution calculations. Estimates, at 500 nm, of the single scattering albedo ω0(0.87–0.96), and the aerosol asymmetry parameter g (0.72–0.73) suggest that the dust layer causes a net cooling forcing at the top of the atmosphere.  相似文献   

4.
5.
热带大气季节内振荡(MJO)预报是国际研究热点,我国尚处于起步阶段。近些年国际上MJO预报水平得到大幅提升,主要得益于包含海气耦合过程的气候模式的使用,这其中模式预报初始化和集合扰动生成方法至关重要。本文发展了适用于国家气候中心第二代气候预测业务模式BCC-CSM1.1(m)的MJO初始化方案,并在此基础上提出了基于不同初始化方案形成扰动的集合预报新方法,可以将MJO有技巧预报时效延长到约20天,为次季节-季节预报提供重要依据。  相似文献   

6.
This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1.1(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Niño3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and El Niño-Southern Oscillation.  相似文献   

7.
Since the interaction between atmospheric synoptic eddy(SE)(2–8 days) activity and low-frequency(LF)(monthly)flow(referred to as SELF) plays an essential role in generating and maintaining dominant climate modes,an evaluation of the performance of BCC_CSM1.1(m) in simulating the SE feedback onto the LF flow is given in this paper.The model captures well the major spatial features of climatological eddy vorticity forcing,eddy-induced growth rate,and patterns of SELF feedback for the climate modes with large magnitudes in cold seasons and small magnitudes in warm seasons for both the Northern and Southern Hemisphere.As in observations,the eddy-induced growth rate and SELF feedback patterns in the model also show positive SE feedback.Overall,the relationships between SE and LF flow show that BCC_CSM1.1(m)satisfactorily captures the basic features of positive SE feedback,which demonstrates the simulation skill of the model for LF variability.Specifically,such an evaluation can help to find model biases of BCC_CSM1.1(m) in simulating SE feedback,which will provide a reference for the model's application.  相似文献   

8.
利用1979—2005年OAFlux (Objectively Analyzed air-sea Fluxes) 观测资料以及CMIP5的15个耦合模式的模拟结果,评估了BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量气候态和变化趋势的模拟能力,并分析造成趋势偏差的可能原因。结果表明:BCC_CSM1.1(m) 模式模拟热带太平洋年平均潜热通量气候态在各纬度上差异较大, 其中在赤道的模拟能力较佳,而在10°N和8°S附近模拟偏差较大;BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量趋势的模拟能力一般,造成趋势偏差的主要原因是该模式低估了风速对潜热通量的局地贡献以及它对风速的非局地贡献的模拟存在较大偏差。此外,该模式未能较好地模拟出风速对全球变暖响应。因此,BCC_CSM1.1(m) 模式对热带太平洋年平均潜热通量趋势模拟的改进需加强其对风速模拟的改进。  相似文献   

9.
In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Center System Model,BCC;SM1.1(m). Forecast skills during the different ENSO phases are analyzed and it is shown that the ENSO forecasts appear to be more challenging during the developing phase, compared to the decay phase. During ENSO development, the SST prediction errors are significantly negative and cover a large area in the central and eastern tropical Pacific, thus limiting the model skill in predicting the intensity of El Nino. The large-scale SST errors, at their early stage, are generated gradually in terms of negative anomalies in the subsurface ocean temperature over the central-western equatorial Pacific,featuring an error evolutionary process similar to that of El Nino decay and the transition to the La Nina growth phase.Meanwhile, for short lead-time ENSO predictions, the initial wind errors begin to play an increasing role, particularly in linking with the subsurface heat content errors in the central-western Pacific. By comparing the multiple samples of initial fields in the model, it is clearly found that poor SST predictions of the Nino-3.4 region are largely due to contributions of the initial errors in certain specific locations in the tropical Pacific. This demonstrates that those sensitive areas for initial fields in ENSO prediction are fairly consistent in both previous ideal experiments and our operational predictions,indicating the need for targeted observations to further improve operational forecasts of ENSO.  相似文献   

10.
11.
Simultaneous measurements of soluble and insoluble impurities were made on the 950 m deep Vostok (78°30′S, 106°54′E, 3420 m a.s.l.) ice core, spanning roughly 50000 yr, using various analytical techniques. We observed higher continental (×37) and marine (×5.1) inputs during the last glacial age than during the Holocene stage. A study of microparticle compositions and of volcanic indicators (Zn, H2SO4), shows that the high observed crustal input is not due to enhanced volcanism, but is rather of continental eolian origin. For the first time, the ionic balance along a deep ice core is established, mainly used in discussing the evolution of the Cl to Na ratio over central East Antarctica with changing climatic conditions: the presence of relatively high amounts of Na2SO4 in the marine aerosol at the Vostok site during the Holocene is demonstrated. Comparison with the Dome C (74°39′S, 124°10′E, 3040 m a.s.l.) results confirms the chronology of the major events: (i) maximum terrestrial input around the last glacial maximum (~18 ka BP); (ii) end of the high continental flux over Antarctica near 13 ka BP; (iii) marine input varying in an opposing manner to isotopic fluctuations with rather high concentrations beginning to decrease when isotopic values increase and reaching Holocene values at the end of the transition between cold and warmer climate conditions. Detailed comparison with results provided by deep ice cores from other sites which are probably more influenced by oceanic air masses seems to indicate that most of the aerosol reaching central East Antarctica travel over large distance probably at rather high altitude through the troposphere. We can consider that central East Antarctica is well representative of the upper part of the troposphere (higher than i.e., 3000 m) and should, therefore, provide valuable data for global and Antarctic paleoclimatological models.  相似文献   

12.
The sea surface temperature anomalies(SSTAs) in the tropical Indian Ocean(TIO) show two dominant modes at interannual time scales,referred to as the Indian Ocean basin mode(IOBM) and dipole mode(IOD).Recent studies have shown that the IOBM and IOD not only affect the local climate,but also induce remarkable influences in East Asia via teleconnections.In this study,we assess simulations of the IOBM and IOD,as well as their teleconnections,using the operational seasonal prediction models from the Met Office(Had GEM3) and Beijing Climate Center [BCC CSM1.1(m)].It is demonstrated that the spatial patterns and seasonal cycles are generally reproduced by the control simulations of BCC CSM1.1(m) and Had GEM3,although spectra biases exist.The relationship between the TIO SSTA and El Nio is successfully simulated by both models,including the persistent IOBM warming following El Nio and the IOD–El Nio interactions.BCC CSM1.1(m) and Had GEM3 are capable of simulating the observed local impact of the IOBM,such as the strengthening of the South Asian high.The influences of the IOBM on Yangtze River rainfall are also captured well by both models,although this teleconnection is slightly weaker in BCC CSM1.1(m) due to the underestimation of the northwestern Pacific subtropical high.The local effect of the IOD on East African rainfall is reproduced by both models.However,the remote control of the IOD on rainfall over southwestern China is not clear in either model.It is shown that the realistic simulations of TIO SST modes and their teleconnections give rise to the source of skillful seasonal predictions over China.  相似文献   

13.
Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model.  相似文献   

14.
This study focuses on model predictive skill with respect to stratospheric sudden warming(SSW) events by comparing the hindcast results of BCC_CSM1.1(m) with those of the ECMWF's model under the sub-seasonal to seasonal prediction project of the World Weather Research Program and World Climate Research Program. When the hindcasts are initiated less than two weeks before SSW onset, BCC_CSM and ECMWF show comparable predictive skill in terms of the temporal evolution of the stratospheric circumpolar westerlies and polar temperature up to 30 days after SSW onset. However, with earlier hindcast initialization, the predictive skill of BCC_CSM gradually decreases, and the reproduced maximum circulation anomalies in the hindcasts initiated four weeks before SSW onset replicate only 10% of the circulation anomaly intensities in observations. The earliest successful prediction of the breakdown of the stratospheric polar vortex accompanying SSW onset for BCC_CSM(ECMWF) is the hindcast initiated two(three) weeks earlier. The predictive skills of both models during SSW winters are always higher than that during non-SSW winters, in relation to the successfully captured tropospheric precursors and the associated upward propagation of planetary waves by the model initializations. To narrow the gap in SSW predictive skill between BCC_CSM and ECMWF, ensemble forecasts and error corrections are performed with BCC_CSM. The SSW predictive skill in the ensemble hindcasts and the error corrections are improved compared with the previous control forecasts.  相似文献   

15.
In November 2004–January 2005, a micro orifice uniform deposit impactor (MOUDI) and a Nanometer (nanometer)-MOUDI were used in the center of Taiwan to measure particle size (18 nm particle size 18 μm) distributions of atmospheric aerosols at a traffic site during the winter period. The average Mass in Media Aerodynamic Diameter (MMAD) of suspended particles is 0.99 μm this study. As for the ultra fine and nanometer (nanometer) particle mode, the composition order for these major ions species was SO42− NH4+ NO3 Mg2+ Ca2+ Na+ K+ Cl. An ion Chromatography (DIONEX-100) was used to analyze major anion species, Cl, NO3, SO42− and cation species, NH4+Na+, K+, Ca2+Mg2+. Their concentrations were also extracted from various particles size modes (nanometer (nanometer), ultra fine, fine and coarse). The results obtained in this study also indicated that the average portions for the major ionic species (SO42−, NH4+ and Mg2+) in the nanometer (nanometer), ultra fine, fine and coarse particulate modes are about 34%, 37%, 63% and 30%, respectively at this traffic sampling site during the winter period.  相似文献   

16.
利用1991-2017年BCC_CSM1.1(m)模式模拟数据和NCEP/NCAR逐月再分析资料,评估了BCC_CSM1.1(m)对初夏东北冷涡的模拟能力。结果表明:BCC_CSM1.1(m)模式可以对500 hPa位势高度场气候态进行模拟,均方根误差显示该模式对中国东北南部地区500 hPa位势高度场的模拟要优于东北北部地区。EOF第一模态结果显示,该模式可以较好地模拟出500 hPa位势高度场的主要时空变化特征。BCC_CSM1.1(m)模式能够模拟出近27 a东北冷涡指数的上升趋势和年际变化,但模拟的上升趋势较实况偏强,年际变率较实况偏弱。BCC_CSM1.1(m)模式能够模拟出东北冷涡指数的年代际突变,但是对突变开始时间的模拟较实况偏晚。BCC_CSM1.1(m)模式能够模拟出东北冷涡指数和500 hPa位势高度场在东北及其附近地区的显著正相关,不能模拟出东北冷涡指数与东北初夏降水之间的显著负相关。此外,模式东北冷涡指数对东北初夏降水的预测能力十分有限。  相似文献   

17.
利用新疆2012年11月1日至2013年10月31日的地面2米温度和10米风场资料,对应用改进后的新疆快速更新循环数值预报同化系统(XJ-RUC)的预报效果进行检验。结果表明:XJ-RUC系统对地面2米温度和10米风场的预报均方根误差和偏差随起报时次和预报时效的不同存在差异,在温度预报方面存在“低温偏高,高温偏低”的趋势,夏、秋、冬三季对18UTC预报最好,春季则对00UTC的预报接近实况;10米风场的预报偏差在冬季随时效推进逐渐增大,春、夏、秋三季则在06UTC出现1.0m/s左右的风速偏差极小值。不论是温度还是风速预报,均在冬季效果最差。  相似文献   

18.
Summary Recently we reported on results concerning the structure of the aerosol chemical matrix in samples collected from 1972 to 1982 at a mountain observatory at 1780 m a.s.l. in a clean air region (BAPMoN-station). Trend analyses and parameterizations have been made using the meteorological environmental conditions. Sampling and measurements were continued and show in the recent past for components of mostly anthropogenic origin significant reductions. Moreover, we give for the first time results of synchronous aerosol sampling at the mountain observatory and in the neighboring valley floor at 740 m a.s.l., the horizontal distance being only 6 km. The results are analyzed statistically.
In jüngster Zeit beobachtete starke Änderungen in der Aerosolchemischen Matrix in 1780 m NN (BAPMoN-Bergstation) und Ergebnisse erster Vergleiche mit simultanen Proben aus 740 m NN
Zusammenfassung Kürzlich wurde über Ergebnisse der Struktur der chemischen Aerosol-Matrix berichtet, welche von 1972 bis 1982 auf einem Bergobservatorium in 1780 m NN in einer Reinluftzone(BAPMoN-Station)gesammelt wurden. Trend-Analysen und Parameterisierungen mit Hilfe der meteorologischen Umweltbedingungen wurden durchgeführt. Die Probenahmen und Messungen wurden fortgesetzt und zeigen im Hinblick auf Komponenten hauptsächlich anthropogenen Ursprungs in jüngster Zeit signifikante Reduzierungen, die dargestellt werden. Außerdem werden erstmals Ergebnisse mitgeteilt aus synchronen Aerosol-Probenahmen am Bergobservatorium in 740 m NN bei nur 6 km horizontaler Distanz. Die Ergebnisse werden statistisch analysiert.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号