首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The Songshugang granite, hidden in the Sinian metasedimentary stratum, is a highly evolved rare-element granite in northeastern Jiangxi province, South China. The samples were systematically taken from the CK-102 drill hole at the depth of 171–423 m. Four types of rocks were divided from the bottom upwards: topaz albite granite as the main body, greisen nodules, topaz K-feldspar granite and pegmatite layer. Electron-microprobe study reveals that the rare-element minerals of the Songshugang granite are very different from those of other rare-element granites. Mn# [Mn/(Fe + Mn)] and Ta# [Ta/(Nb + Ta)] of columbite-group minerals and Hf# [Hf/(Zr + Hf)] of zircon are nearly constant within each type of rocks. However, back-scattered electron imaging revealed that Nb–Ta oxides and zircon of the Songshugang granite, especially those of topaz albite granite, topaz K-feldspar granite and greisen, are commonly characterized by a specific two-stage texture on the crystal scale. The early-stage Nb–Ta oxide is simply subhedral-shaped columbite-(Fe) (CGM-I) with low Mn# (0.16–0.37) and Ta# (0.05–0.29). Columbite-(Fe) is penetrated by the later-stage tantalite veinlets (CGM-II) or surrounded by complex Nb–Ta–Sn–W mineral assemblages, including tantalite-(Fe), wodginite (sl), cassiterite, and ferberite. Tantalite has wide range of Mn# values (0.15–0.88) from Fe-dominance to Mn-dominance. Wodginite with Ta>Nb has large variable concentrations of W, Sn and Ti. Cassiterite and ferberite are all enriched in Nb and Ta (Nb2O5 + Ta2O5 up to 20.12 wt.% and 31.42 wt.%, respectively), with high Ta# (>0.5). Similar to Nb–Ta oxides and Nb–Ta–Sn–W mineral assemblages, the early-stage zircon is commonly included by the later-stage zircon with sharply boundary. They have contrasting Hf contents, and HfO2 of the later-stage zircon is up to 28.13 wt.%. Petrographic features indicate that the early-stage of columbite and zircon were formed in magmatic environment. However, the later-stage of rare-element minerals were influenced by fluxes-enriched fluids. Tantalite, together with wodginite, cassiterite, and ferberite implies a Ta-dominant media. An interstitial fluid-rich melt enriched in Ta and flux at the magmatic–hydrothermal transitional stage is currently a favored model for explaining the later-stage of rare-element mineralization.  相似文献   

2.
Cassiterites from both the Beauvoir and Montebras geanited of France are typically rich in trace elements such as Nb and Ta, and contain quite a number of inclusions of columbite (dominantly manganocolumbite).Two thin sections of cassiterite crystals have been prepared for Raman microprobe analysis).The spectra obtained from different parts of the cassiterites show that the vibra-tion frequency of the A1g peak decreases with increasing Nb ,Ta,Fe and Mn atomic contents.It is worthy to note that a new peak (named the “An peak”) has been reported for the first time in the part with oriented columbite inclusions.The vibration frequency varies from 827 to 830 cm^-1.The presence of th enew peak may be attributed to structural changes of cassiterite due to the excess of Nb and Ta in the lattice and the exsolution of columbite inclusions in cassiterite.  相似文献   

3.
Alkali carbonates nyerereite, ideally Na2Ca(CO3)2 and gregoryite, ideally Na2CO3, are the major minerals in natrocarbonatite lavas from Oldoinyo Lengai volcano, northern Tanzania. They occur as pheno- and microphenocrysts in groundmass consisting of fluorite and sylvite; nyerereite typically forms prismatic crystals and gregoryite occurs as round, oval crystals. Both minerals are characterized by relatively high contents of various minor elements. Raman spectroscopy data indicate the presence of sulfur and phosphorous as (SO4)2− and (PO4)3− groups. Microprobe analyses show variable composition of both nyerereite and gregoryite. Nyerereite contains 6.1–8.7 wt % K2O, with subordinate amounts of SrO (1.7–3.3 wt %), BaO (0.3–1.6 wt %), SO3 (0.8–1.5 wt %), P2O5 (0.2–0.8 wt %) and Cl (0.1–0.35 wt %). Gregoryite contains 5.0–11.9 wt % CaO, 3.4–5.8 wt % SO3, 1.3–4.6 wt % P2O5, 0.6–1.0 wt % SrO, 0.1–0.6 wt % BaO and 0.3–0.7 wt % Cl. The content of F is below detection limits in nyerereite and gregoryite. Laser ablation ICP-MS analyses show that REE, Mn, Mg, Rb and Li are typical trace elements in these minerals. Nyerereite is enriched in REE (up to 1080 ppm) and Rb (up to 140 ppm), while gregoryite contains more Mg (up to 367 ppm) and Li (up to 241 ppm) as compared with nyerereite.  相似文献   

4.
Electron probe microanalysis and microscopy is a widely used modern analytical technique primarily for quantifying chemical compositions of solid materials and for mapping or imaging elemental distributions or surface morphology of samples at micrometer or nanometer-scale. This technique uses an electromagnetic lens-focused electron beam, generated from an electron gun, to bombard a sample. When the electron beam interacts with the sample, signals such as secondary electron, backscattered electron and characteristic X-ray are generated from the interaction volume. These signals are then examined by detectors to acquire chemical and imaging information of the sample. A unique part of an electron probe is that it is equipped with multiple WDS spectrometers of X-ray and each spectrometer with multiple diffracting crystals in order to analyze multiple elements simultaneously. An electron probe is capable of analyzing almost all elements (from Be to U) with a spatial resolution at or below micrometer scale and a detection limit down to a few ppm.Mineral inclusions in chromite from the Wafangdian kimberlite, Liaoning Province, China were used to demonstrate the applications of electron probe microanalysis and microscopy technique in characterizing minerals associated with ore deposits, specifically, in this paper, minerals associated with diamond deposit. Chemical analysis and SE and BSE imaging show that mineral inclusions in chromite include anhydrous silicates, hydrous silicates, carbonates, and sulfides, occurring as discrete or single mineral inclusions or composite multiple mineral inclusions. The chromite–olivine pair poses a serious problem in analysis of Cr in olivine using electron probe. Secondary fluorescence of Cr in chromite by Fe in olivine drastically increases the apparent Cr2O3 content of an olivine inclusion in a chromite. From the chemical compositions obtained using electron probe, formation temperatures and pressures of chromite and its mineral inclusions calculated using applicable geothermobarometers are from 46 kbar and 980 °C to 53 kbar and 1130 °C, which are within the stability field of diamond, thus Cr-rich chromite is a useful indication mineral for exploration of kimberlite and diamond deposit. A composite inclusion in chromite composed of silicate and carbonate minerals has a bulk composition of 33.2 wt.% SiO2, 2.5 wt.% Al2O3, 22.0 wt.% MgO, 7.5 wt.% CaO, 2.5 wt.% BaO, 0.8 wt.% K2O, 25.5 wt.% CO2, and 0.8 wt.% H2O, similar to the chemical composition of the Wafangdian kimberlite, suggesting that it is trapped kimberlitic magma.  相似文献   

5.
Using various methods of melt inclusion investigation, including electron and ion microprobe techniques, we estimated the composition, evolution, and formation conditions of melts producing the trachydacites and pantellerites of the Late Paleozoic bimodal volcanic association of Dzarta-Khuduk, Central Mongolia. Primary crystalline and melt inclusions were detected in anorthoclase from trachydacites and quartz from pantellerites and pantelleritic tuffs. Among the crystalline inclusions, we identified hedenbergite, fluorapatite, and pyrrhotite in the trachydacites and F-arfvedsonite, fluorite, ilmenite, and the rare REE diorthosilicate chevkinite in the pantellerites. Melt inclusions in anorthoclase from the trachydacites are composed of glass, a gas phase, and daughter minerals (F-arfvedsonite, fluorite, villiaumite, and anorthoclase rim on the inclusion wall). Melt inclusions in quartz from the pantellerites are composed of glass, a gas phase, and a fine-grained salt aggregate consisting of Li, Na, and Ca fluorides (griceite, villiaumite, and fluorite). Melt inclusions in quartz crystalloclasts from the pantelleritic tuffs are composed of homogeneous silicate glasses. The phenocrysts of the trachydacites and pantellerites crystallized at temperatures of 1060–1000°C. During thermometric experiments with quartz-hosted melt inclusions from the pantellerites, the formation of immiscible silicate and salt (fluoride) melts was observed at a temperature of 800°C. Homogeneous melt inclusions in anorthoclase from the trachydacites have both trachydacite and rhyolite compositions (wt %): 68–70 SiO2, 12–13 Al2O3, 0.34–0.74 TiO2, 5–7 FeO, 0.4–0.9 CaO, and 9–12 Na2O + K2O. The agpaitic index ranges from 0.92 to 1.24. The glasses of homogenized melt inclusions in quartz from the pantellerites and pantelleritic tuffs have rhyolitic compositions. Compared with the homogeneous glasses trapped in anorthoclase of the trachydacites, quartz-hosted inclusions from the pantellerites show higher SiO2 (72–78 wt %) and lower Al2O3 contents (7.8–10.0 wt %). They also contain 0.14–0.26 wt % TiO2, 2.5–4.9 wt % FeO, 9–11 wt % Na2O + K2O, and 0.9–0.15 wt % CaO and show an agpaitic index of 1.2–2.05. Homogeneous melt inclusions in quartz from the pantelleritic tuffs contain 69–72 wt % SiO2. The contents of other major components, including TiO2, Al2O3, FeO, and CaO, are close to those in the homogeneous glasses of quartzhosted melt inclusions in the pantellerites. The contents of Na2O + K2O are 4–10 wt %, and the agpaitic index is 1.0–1.6. The glasses of melt inclusions from each rock group show distinctive volatile compositions. The H2O content is up to 0.08 wt % in anorthoclase of the trachydacites, 0.4–1.4 wt % in quartz of the pantellerites, and up to 5 wt % in quartz of the pantelleritic tuffs. The content of F in the glasses of melt inclusions in the phenocrysts of the trachydacites is no higher than 0.67 wt %, and up to 1.4–2.8 wt % in quartz from the pantellerites. The Cl content is up to 0.2 wt % in the glasses of melt inclusions in the minerals of the trachydacites and up to 0.5 wt % in the glasses of quartz-hosted melt inclusions from the pantellerites. The investigation of trace elements in the homogenized glasses of melt inclusions in minerals showed that the trachydacites and pantellerites were formed from strongly evolved rare-metal alkaline silicate melts with high contents of Li, Zr, Rb, Y, Hf, Th, U, and REE. The analysis of the composition of homogeneous melt inclusions in the minerals of the above rocks allowed us to distinguish magmatic processes resulting in the enrichment of these rocks in trace and rare earth elements. The most important processes are the crystallization differentiation and immiscible separation of silicate and fluoride salt melts. It was also shown that all the melts studied evolved in spatially separated magma chambers. This caused the differences in the character of melt evolution between the trachydacites and pantellerites. During the final stages of differentiation, when the magmatic system was saturated with respect to ore elements, Na-Ca fluoride melts were separated and extracted considerable amounts of Li.  相似文献   

6.
Nb-Ta-Ti-bearing oxide minerals (Nb-Ta-bearing rutile, columbite-group minerals) represent the most common Nb-Ta host in topaz-albite granites and related rocks from the Krásno-Horní Slavkov ore district. Tungsten-bearing columbite-(Fe), W-bearing ixiolite, wodginite and tapiolite-(Fe) are extremely rare in these rocks. Rutile contains significant levels of Ta (up to 37?wt.% Ta2O5) and Nb (up to 24?wt.% Nb2O5), with Ta/(Ta?+?Nb) ratio ranging from 0.04 to 0.61. Columbite-group minerals are represented mostly by columbite-(Fe) and rarely by columbite-(Mn), with Mn/(Mn?+?Fe) ratio ranging from 0.23 to 0.94. The exceptionally rare Fe-rich, W-bearing ixiolite occurs only as inclusions in Nb-Ta-bearing rutile from quartz-free alkali-feldspar syenites (Vysoky Kámen stock). Wodginite was found only in the topaz-albite microgranite of gneissic breccia matrix that occurs in the upper most part of the Hub topaz-albite granite stock. In wodginite, the Mn/(Mn?+?Fe) ratio is 0.42?C0.51, whereas the coexisting tapiolite-(Fe) has a distinctly lower Mn/(Mn?+?Fe) ratio close to 0.06.  相似文献   

7.
Summary Titanian ferrocolumbite is a rare accessory mineral in the spodumene-bearing pegmatites at Weinebene, Carinthia, Austria. It contains abundant exsolved niobian rutile and scarce inclusions of cassiterite that may be primary. The titanian ferrocolumbite is relatively homogeneous with Mn/(Mn + Fe) 0.24–0.33, Ta/(Ta + Nb) 0.09–0.13 (atomic ratios) and 0.47–0.88 Ti per 12 cations (2.7–5.0 wt.% TiO2). Natural specimens are considerably disordered but become more ordered on heating. Niobian rutile has Mn/(Mn + Fe) 0.00–0.04 and Ta/(Ta + Nb) 0.26–0.38; it concentrates Fe, Ta, Ti and Sn relative to the Mn- and Nb-enriched ferrocolumbite. The overall scarcity of Nb, Ta-oxide minerals in the spodumene-bearing pegmatites of southern Ostalpen conforms to their general features ranking them with the albite-spodumene type of rare-element pegmatites.With 4 Figures  相似文献   

8.
Summary The study of platinum-group minerals (PGM) concentrates from the Nizhni Tagil placers related to the Soloviev Mountain (Gora Solovieva) Uralian-Alaskan-type intrusion revealed a predominance of (Pt, Fe) alloys over Ir-, and Os-bearing alloys. (Pt, Fe) alloys (“isoferroplatinum-type”) are interstitial with respect to chromite and show important variations in their chemical compositions, which are, however, falling within the experimentally determined stability field of isoferroplatinum. Tetraferroplatinum, enriched in Cu and Ni and tulameenite represent low-temperature mineral phases replacing (Pt, Fe) alloys. Alloys belonging to the Os–Ir–Ru ternary system have compositions corresponding to native osmium, iridium and ruthenium, respectively, and to rutheniridosmine. Osmium exsolutions appear in Ir-, and (Pt, Fe) alloys, and iridium exsolutions in (Pt, Fe) alloys. Laurite is a high-temperature phase included in native iridium and (Pt, Fe) alloys. Low-temperature PGM association comprises Ir-bearing sulpharsenides, including a phase (Ir, Os, Fe, Pt, Ru, Ni)3(As, Sb)0.85S, and a palladium antimonide Pd20Sb7. These two phases were previously unknown in nature. Furthermore, native palladium occurs in the studied concentrates. This low-temperature paragenesis indicates an interaction of Pt-, Os-, Ir- and Ru-bearing alloys with late fluids enriched in volatiles, As and Sb. The chromite composition is characterized by the predominance of Cr3+ → Fe3+ substitution like in other Uralian-Alaskan-type intrusions; that indicates a fO2 variation during the chromite precipitation. Monomineralic inclusions of euhedral clinopyroxene and chromite crystals in (Pt, Fe) alloys were observed. Furthermore, (Pt, Fe) alloys contain polyphase silicate inclusions, which occupy the alloy negative crystals. Two types of silicate inclusions were recognized: (1) Low-pressure inclusions composed of amphibole, biotite, Jd-poor clinopyroxene, magnetite, apatite and glass; (2) High-pressure inclusions include: omphacitic clinopyroxene (up to 56 mol.% Jd), tremolite, muscovite, apatite, titanite and glass. In this case, the clinopyroxene is strongly zoned, revealing a pressure drop from about 25 to 5 kbar. The chemical composition of glass is corundum-normative and its H2O content varies from about 12 to 15 wt.%. The composition of magmatic melts, from which the silicate inclusions have originated was estimated using EPMA and image analysis interpreted by stereology. Their compositions are close to those obtained experimentally by hydrous partial melting of upper mantle rocks. The interpretation of analytical data shows that magmatic melts entrapped by (Pt, Fe) alloys crystallized from about 1100 to 700 °C. The (Pt, Fe) alloys formed after the crystallization of chromite, clinopyroxene and albite. Consequently, the precipitation temperature of (Pt, Fe) alloys is estimated at about 900 °C. The significant pressure drop implies a decrease of volatile concentrations in the magmatic melt and the possible formation of a fluid phase, which might have generated, the precipitation of chromite and PGM.  相似文献   

9.
The Neo-Archean Dominion Reefs (~3.06 Ga) are thin meta-conglomerate layers with concentrations of U- and Th-bearing heavy minerals higher than in the overlying Witwatersrand Reefs. Ore samples from Uranium One Africa’s Rietkuil and Dominion exploration areas near Klerksdorp, South Africa, were investigated for their mineral paragenesis, texture and mineral chemical composition. The ore and heavy mineral assemblages consist of uraninite, other uraniferous minerals, Fe sulphides, Ni–Co sulfarsenides, garnet, pyrite, pyrrhotite, monazite, zircon, chromite, magnetite and minor gold. Sub-rounded uraninite grains occur associated with the primary detrital heavy mineral paragenesis. U–Ti, U–Th minerals, pitchblende (colloform uraninite) and coffinite are of secondary, re-mobilised origin as evidenced by crystal shape and texture. Most of the uranium mineralisation is represented by detrital uraninite with up to 70.2 wt.% UO2 and up to 9.3 wt.% ThO2. Re-crystallised phases such as secondary pitchblende (without Th), coffinite, U–Ti and U–Th phases are related to hydrothermal overprint during low-grade metamorphism and are of minor abundance.  相似文献   

10.
This article reports a study of chromitites from the LG-1 to the UG-2/3 from the Bushveld Complex. Chromite from massive chromitite follows two compositional trends on the basis of cation ratios: trend A—decreasing Mg/(Mg + Fe) with increasing Cr/(Cr + Al); trend B—decreasing Mg/(Mg + Fe) with decreasing Cr/(Cr + Al). The chromitites are divided into five stages on the basis of which trend they follow and the data of Eales et al. (Chemical Geology 88:261–278, 1990) on the behaviour of the Mg/Fe ratio of the pyroxene and whole rock Sr isotope composition of the environment in which they occur. Following Eales et al. (Chemical Geology 88:261–278, 1990), the different characteristics of the stages are attributed to the rate at which new magma entered the chamber and the effect of this on aAl2O3 and, in the case of stage 5, the appearance of cumulus plagioclase buffering the aAl2O3. The similarity of PGE profiles across the MG-3 and MG-4 chromitites that are separated laterally by up to 300 km and the variation in V in the UG-2 argue that the chromitites have largely developed in situ. Modelling using the programme MELTS shows that increase in pressure, mixing of primitive and fractionated magma, felsic contamination of primitive magma or addition of H2O do not promote crystallization of spinel before orthopyroxene (in general they hinder it) and that the Cr2O3 content of the magma was of the order of 0.25 wt.%. Less than 20% of the chromite in the magma is removed before orthopyroxene joins chromite, which implies a >13-km thickness of magma for the Critical Zone. It is suggested that the large excess of magma has escaped up marginal structures such as the Platreef. The PGE profile of chromitites depends on whether sulphide accumulated or not along with chromite. Modelling shows that contamination of Critical Zone magma with a felsic melt will induce sulphide immiscibility, although not chromite precipitation. The LG-1 to LG-4 chromitites developed without sulphide, whilst those from the LG-5 upwards had associated liquid sulphide. Much of the sulphide originally in the LG-5 and above has been destroyed as a result of reaction with the chromite.  相似文献   

11.
The heavy mineral placer deposits of the coastal sediments in south Maharashtra stretch for 12.5 km from Pirwadi in the north to Talashil in the south. The area is a sand bar represented by a narrow submergent coastal plain lying between the Achara and Gad Rivers. The sediments in the area are mainly sands which are moderately well sorted to well sorted. The heavy mineral concentration in the surficial sediments ranges between 0.69 and 98.32 wt % (28.73 wt % in average). The heavy mineral concentration shows an increasing trend from north to south. The heavy mineral suite consists predominantly of opaque minerals (ilmenite, magnetite and chromite), garnet, pyroxene, amphibole, zircon, tourmaline, rutile, staurolite, etc. Ilmenite grains are fresh whereas magnetite grains show the effect of weathering and alteration. The chromite grains are rounded to sub-rounded with alteration at the margin of the grains. The surficial textures of the opaque minerals show mechanical breaking that indicates limited distance of transportation. Ilmenite has TiO2 in the range between 40.04 and 46.6 wt %. Based on ore microscopy studies, the magnetite grains appear to be of two types: pure magnetite and titano-magnetite. Compositionally, the total magnetite fractions have Fe2O3 between 32 and 46 wt %, FeO between 19.0 and 25 wt % and TiO2 between 14.3 and 23.9 wt %. The chromite grains are an admixture of two varieties, ferro-chromite and magnesio-chromite. The chromite grains have 32.06–47.5 wt % of Cr2O3 with total iron between 23.86 wt % (4.73% Fe2O3 and 19.13% FeO) and 27.89 wt % (4.36% Fe2O3 and 23.53% FeO) and MgO between 12 and 40 wt %. The observed variations in the distribution of heavy minerals in the area are due to differences in the sediment supply, their specific gravity and oceanographic processes all of which result in a selective sorting of the sediments. The observed mineral assemblages of transparent heavy minerals (pyroxene, amphibole, tourmaline, kyanite, garnet, zircon and olivine) are suggestive of their derivation from a heterogeneous provenance comprising of igneous rocks, high grade metamorphic rocks and reworked Kaladgi sediments. The chromite grains appear to have been derived from ultrabasic rocks present in the upper reaches of the Gad River. The inferred reserves of ilmenite, magnetite and chromite are 0.175, 0.395 and 0.032 million tons, respectively.  相似文献   

12.
Tapiolite hosted in lithium-caesium-tantalum (LCT)-type granitic pegmatite, near Arehalli, of Holenarsipur schist belt (HSB), occurs as euhedral crystals within the muscovite books or in association with columbite-tantalite. In this study, compositional and crystallographic characteristics of the tapiolite are presented. The tapiolite is Ta-rich (79.8% Ta2O5) and also Fe-rich (13.1% FeO) with minor amounts of Nb (3.80% Nb2O5) and Mn (0.30% MnO2), and is a Fe-end member of the FeTa2O6-MnTa2O6 series, ferrotapiolite. The tapiolite has very restricted compositional range. Calculated structural formula of the investigated tapiolite is [(Fe0.27 Mn0.66)0.93 (Nb0.45 Ta1.57 Ti0.004 Sn0.03)2.027O6].  相似文献   

13.
The data obtained on melt and fluid inclusions in minerals of granites, metasomatic rocks, and veins with tin ore mineralization at the Industrial’noe deposit in the southern part of the Omsukchan trough, northeastern Russia, indicate that the melt from which the quartz of the granites crystallized contained globules of salt melts. Silicate melt inclusions were used to determine the principal parameters of the magmatic melts that formed the granites, which had temperatures at 760–1020°C, were under pressures of 0.3–3.6 kbar, and had densities of 2.11–2.60 g/cm3 and water concentrations of 1.7–7.0 wt %. The results obtained on the fluid inclusions testify that the parameters of the mineral-forming fluids broadly varied and corresponded to temperatures at 920–275°C, pressures 0.1–3.1 kbar, densities of 0.70–1.90 g/cm3, and salinities of 4.0–75.0 wt % equiv. NaCl. Electron microprobe analyses of the glasses of twelve homogenized inclusions show concentrations of major components typical of an acid magmatic melt (wt %, average): 73.2% SiO2, 15.3% Al2O3, 1.3% FeO, 0.6% CaO, 3.1% Na2O, and 4.5% K2O at elevated concentrations of Cl (up to 0.51 wt %, average 0.31 wt %). The concentrations and distribution of some elements (Cl, K, Ca, Mn, Fe, Cu, Zn, Pb, As, Br, Rb, Sr, and Sn) in polyphase salt globules in quartz from both the granites and a mineralized miarolitic cavity in granite were assayed by micro-PIXE (proton-induced X-ray emission). Analyses of eight salt globules in quartz from the granites point to high concentrations (average, wt %) of Cl (27.5), Fe (9.7), Cu (7.2), Mn (1.1), Zn (0.66), Pb (0.37) and (average, ppm) As (2020), Rb (1850), Sr (1090), and Br (990). The salt globules in the miarolitic quartz are rich in (average of 29 globules, wt %) Cl (25.0), Fe (5.4), Mn (1.0), Zn (0.50), Pb (0.24) and (ppm) Rb (810), Sn (540), and Br (470). The synthesis of all data obtained on melt and fluid inclusions in minerals from the Industrial’noe deposit suggest that the genesis of the tin ore mineralization was related to the crystallization of acid magmatic melts. Original Russian Text@ V.B. Naumov, V.S. Kamenetsky, 2006, published in Geokhimiya, 2006, No. 12, pp. 1279–1289.  相似文献   

14.
The REE-Ti silicate chevkinite has been recognised previously in Miocene ignimbrites from Gran Canaria, and in correlative offshore syn-ignimbrite turbidites. We have estimated the partition coefficients of REE, Y, Zr and Nb for chevkinite and co-existing peralkaline rhyolitic (comendite) glass using synchrotron-XRF-probe analyses (SYXRF) in order to evaluate the role of this mineral in the REE budget of felsic peralkaline magmas. The Zr/Nb ratio of the chevkinite is 1.55–1.7, strongly contrasting with Zr/Nb of 6.5 in the associated glass. Zr shows a three-fold enrichment in chevkinite relative to the residual melt, whereas Nb is enriched by a factor >10. The enrichment of Ce and La in chevkinite is even more significant, namely 19 wt(%) Ce and 12 wt(%) La, compared to 236 ppm Ce and 119 ppm La in the glass. Chevkinite/glass ratios are 988±30 for La, 806±30 for Ce, 626±30 for Pr, 615±40 for Nd, 392±50 for Sm, 225±30 for Eu, 142±25 for Gd, 72±20 for Dy. For trace elements, we derived KdTE of 74±25 for Y, >8 for Hf, >50 for Th, 15±5 for Nb and 3.55±0.4 for Zr. Mineral/glass ratios for co-existing titanite are 28±10 for La, 86±20 for Ce, 98±30 for Pr, 134±35 for Nd, 240±50 for Sm, 50±20 for Eu, 96±25 for Gd, 82±25 for Dy, 99±30 for Y, 45±10 for Nb and 3±0.5 for Zr. Based on these data, the removal of only 0.05 wt% of chevkinite from a magma with initially 300 ppm Ce would deplete the melt by 93 ppm to yield 207 ppm Ce in the residual liquid. Chevkinite thus appears, when present, to be the controlling mineral within the LREE budget of evolved peralkaline magmas.Editorial responsibility: I. Parsons
Valentin R. TrollEmail: Phone: +353-1-6083856Fax: +353-1-6081199
  相似文献   

15.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

16.
The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C–O–H fluids: CO2-rich, CO2–H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O–NaCl–CO2 fluids (1,500–5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O–NaCl fluids (140–1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O–NaCl–CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O = −5.9‰ to 10.9‰, δD = −102‰ to −87‰) of the ore-forming fluids indicate that the fluids were derived from magmatic sources and evolved by mixing with local meteoric water by limited water–rock exchange and by partly degassing in uplift zones during mineralization. While most features of the Samgwang mine are consistent with classification as an orogenic gold deposit, isotopic and fluid chemistry indicate that the veins were genetically related to intrusions emplaced during the Jurassic to Cretaceous Daebo orogeny.  相似文献   

17.
This work considers the studies of melt and fluid inclusions in spinel of ultramafic rocks in the mantle wedge beneath Avacha volcano (Kamchatka). The generations of spinel were identified: 1 is spinel (Sp-I) of the “primary” peridotites, has the highest magnesium number (#0.69–0.71), highest contents of Al2O3 and lowest contents of Cr2O3 (26.2–27.1 and 37.5–38.5 wt %, respectively), and the absence in it of any fluid and melt inclusions; 2 is spinel (Sp-II) of the recrystallized peridotites, has lower magnesium number (Mg# 0.64–0.61) and the content of Al2O3 (18–19 wt %), a higher content of Cr2O3 (45.4–47.2 wt %) and the presence of primary fluid inclusions; 3 is spinel (Sp-III) that is characterized by the highest content of Cr2O3 (50.2–55.4 wt %), the lowest content of Al2O3 (13.6–16.6 wt %), and the presence of various types of primary melt inclusions. The data obtained indicate that metasomatic processing of “primary” peridotites occurred under the influence of high concentrated fluids of mainly carbonate-water-chloride composition with influx of the following petrogenic elements: Si, Al, Fe, Ca, Na, K, S, F, etc. This process was often accompanied by a local melting of the metasomatized substrate at a temperature above 1050°C with the formation of melts close to andesitic.  相似文献   

18.
云南个旧锡多金属矿床处于滇东南锡矿带的西端,是全球最大的锡多金属矿床之一。锡石作为个旧锡矿床中最主要的矿石矿物,其矿物化学特征对矿床成因具有重要的指示意义。本文运用扫描电镜、电子探针等手段对个旧锡多金属矿床中6种不同类型矿石中的锡石进行了详细的内部结构和矿物化学特征研究,并对其可能的成因进行了探讨。扫描电镜研究结果发现,除层间氧化矿型锡石较破碎外,其余类型锡石内部均发育有明显的环带结构。电子探针分析结果显示:各类型矿石中锡石的SnO2质量分数变化范围为97.700%~101.728%;Ta2O5、FeO、ZrO2、HfO2平均质量分数较高,指示锡石形成于高温热液环境;(Fe+Mn)/(Nb+Ta)显示个旧锡矿区各类型矿石中的锡石具有热液锡石的特征,且各类型锡石中Nb2O5和MnO的质量分数极低,说明成矿热液可能来自于高度分异的花岗质岩浆,而Nb、Ta质量分数说明成矿作用发生于酸性-弱酸性环境中;In2O3质量分数显示了成矿温度及压力从块状硫化物型矿石、矽卡岩型矿石、电气石细脉带型矿石、含锡白云岩型矿石到层间氧化矿型矿石有逐渐降低的趋势;云英岩型矿石中锡石的In2O3质量分数较高还需进一步论证。锡石形成过程中岩浆热液物理化学条件的变化导致其内部环带结构的形成,电子探针数据显示锡石的环带结构中化学成分呈"锯齿状"变化,显示成矿作用发生于动荡的环境中,说明锡石沉淀具有多期多阶段的特征。  相似文献   

19.
Sub-micron Fe,Mn-oxides in columbite–tantalite minerals are bound to metamict domains in the host. These nano-oxides are secondary minerals as the metamict zones formed through accumulation of damages from α-recoil, each of which in a small volume destroys the crystal lattice of the U and Th bearing columbite–tantalite host. Transmission electron microscope investigations demonstrate that the oxides fall in the compositional range of magnetite–jacobsite–iwakiite (Fe,Mn)3O4 and of hematite-type minerals along the Fe2O3–Mn2O3 join, i.e., minerals that are known to be major carriers of magnetic remanence. Measured magnetic properties of isolated columbite–tantalite crystals demonstrate in some samples magnetic remanence, which is bound to sub-micron pseudosingle-domain crystals rather than to the host. Thus, the magnetic remanence is not related to the formation of columbite–tantalite, but to the crystallization of the nano-oxides, which occur in metamict domains of the host and therefore are secondary. Depending on the content and distribution of U and Th, the nano-oxides may form diachronously within an individual and among several host crystals. Magnetic secondary nano-oxides are not restricted to columbite–tantalite minerals, but may occur in other minerals where high contents of Fe and Mn are associated with high contents of U and Th. Rocks that show the same spatial distribution for U and Fe, as for instance some red sandstones, may display magnetic properties that are controlled by recoil-induced growth of secondary Fe-oxides.
Rolf L. RomerEmail:
  相似文献   

20.
In western part of the CEIM (Central-East Iranian Microcontinent) (Bayazeh area, Isfahan province, Iran), a series of Paleozoic basaltic rocks, occur. Major minerals of these basalts are olivine, clinopyroxene (diopside, augite), plagioclase (albite), sanidine, amphibole (kaersutite), phlogopite, ilmenite and magnetite. Secondary minerals include epidote, pumpellyite, albite, calcite and chlorite. Olivine and clinopyroxene are as phenocryst, while feldspars are restricted to groundmass. Chemical composition of clinopyroxenes indicates crystallization during ascending of magma. Geochemical analysis of whole rock samples shows that these rocks are characterized by low SiO2 (43.21–48.45 wt %), high TiO2 (1.81–3.00 wt %) and P2O5 (0.18–0.34 wt %). Petrography, chemistry of clinopyroxenes and whole rock analyses reveal an alkaline nature of these basalts. They are enriched in alkalis (Na2O + K2O = 4.1–7.7 wt %), LILE, HFSE and LREE. The Bayazeh alkali-basalts present strong enrichment in LREE relative to HREE (La/Lu ratio = 77.6–119.6) and were dominantly derived from partial melting of a metasomatized asthenospheric garnet-amphibole lherzolite. Field relationships reveal that junction of faults in west of the Bayazeh prepared a suitable path for ascending of magma from deep regions to surface and intra-plate continental magmatism. The Paleo-Tethys subduction from lower to upper Paleozoic is too enough for mantle enrichment in volatiles and basaltic alkaline magmatisrn in upper Paleozoic of Bayazeh area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号