首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of the geometry and the dimensions of a cave is an important factor considered for planning geotechnical, archeological, speleological studies, and quarrying activities. In recent years, researchers have raised an increasing number of questions related to the shape and size of cavities using 2D geoelectrical resistivity imaging techniques. The inverse model is valuable in detecting the location and extent of subterranean cavities. In this study, a 2D geoelectrical resistivity imaging technique is employed to determine the geometry of a known subterranean cavity. The results provided valuable information and demonstrated the effectiveness of the technique for exploring the size of cavities.  相似文献   

2.
Water resources in the Algerian South are rare and difficult to reach because they are often too deep. This is the case of Guerrara which is characterized by an annual precipitation average of less than 60 mm. The water supply is warranted from groundwater, frequently too deep and badly known. The main purpose of the present study is to determine the geometry of aquifer from geophysical data. Fourteen vertical electrical soundings covering the total surface area were carried out by using an arrangement of electrodes called “Schlumberger array.” The length of the selected transmission line (AB) was 1,000 m, which allowed a vertical investigation reaching up to 160 m of depth. The analysis of the results shows that the prospected zone is characterized by the succession of layers with different electrical resistivities. A sandstone aquifer characterized by resistivities near 100 Ω m overcoming a limestone aquifer stronger with values that exceed 1,000 Ω m, separated by a conductive layer of clay with average resistivity of 15 Ω m. Distribution map of sandstones thickness shows the structural variations of this horizon allowing an estimation of its hydraulic potential.  相似文献   

3.
The hydrogeological role of trees in water-limited environments   总被引:3,自引:1,他引:3  
Field experiments have already proven that many tree species in water-limited environments (WLE) depend on groundwater. Typically, such trees survive dry seasons and droughts by uptake of water, directly from the groundwater body or from the capillary fringe, by rooting systems that may extend to several tens of meters depth. Such trees are also very efficient in finding soil moisture in the unsaturated zone, reducing groundwater recharge. Considering that WLE are typically characterized by low recharge, and that trees may use a significant amount of groundwater, this groundwater “consumption” should not be neglected in groundwater balancing, modeling and resources management. In practice, groundwater uptake by trees in WLE is either underestimated or disregarded because of limited knowledge about that phenomenon. This review discusses the current understanding of the hydrogeological role of trees in water-limited environments, the partitioning of tree transpiration into groundwater and unsaturated zone contributions and the integration of that partitioning in numerical groundwater models. Problems involved in this research are highlighted and possible future research directions are discussed.  相似文献   

4.
5.
基于在鲁中南低山丘陵基岩地区开展的1∶5万水文地质调查工作,通过水文地质调查、水文地质钻探、地球物理勘探、抽水试验、水质分析等技术方法,分析该区水文地质特征。研究结果表明:区内地下水类型划分为松散岩类孔隙水、碎屑岩类孔隙裂隙水、碳酸盐岩类裂隙岩溶水以及基岩裂隙水4类,并总结了其含水岩组富水性;分析了地下水补给、径流、排泄条件及其演化以及环境水文地质问题。圈定了有集中供水意义的第四系孔隙水富水地段3处,总结了地层阻水型蓄水构造和断层储水构造2种基岩蓄水构造类型。区内地下水质量以Ⅲ类、Ⅳ类和Ⅴ类为主,超过Ⅲ类水标准的组分主要是硝酸盐、总硬度、铁,其次为氟化物等。利用总结的区内找水模型,共施工具有供水意义的水文地质钻孔10眼,总涌水量7017.84 m3/d,可解决近10万人生活和5900多亩农田灌溉用水问题。对于寻找新的供水目标含水层及找水定井工作具有指导意义。  相似文献   

6.
A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural–geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km2). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.  相似文献   

7.
Drilling information, historical water table levels, groundwater salinity records of the existing water wells in Wadi Al Bih area, United Arab Emirates, were stored in a geodatabase and used to characterize the geological and hydrogeological settings of this area. A 2D earth resistivity imaging survey was conducted for the first time in the Northern UAE to determine the potential of the Quaternary aquifer and its groundwater quality in the areas where there are no monitoring wells. The results of the chemical analyses of the collected groundwater samples together with the inversion results of the resistivity data were used to draw a total salinity map and determine the spatial variations in groundwater quality. The inversion results of the 2D earth resistivity imaging data indicated that the Quaternary aquifer in the study area is in a good connection with the underlying carbonate aquifer. It also indicated that the carbonate aquifer is of major regional and vertical extension and it contains the fresh water in this area. The data stored in the developed database were used to produce different types of geopotential maps.  相似文献   

8.
9.
Large deep-seated landslides can be reactivated during intense events, and they can evolve into destructive failures. They are generally difficult to recognize in the field, especially when they develop in densely forested areas. A detailed and constantly updated inventory map of such phenomena, and the recognition of their topographic signatures is absolutely a key tool for landslide risk mitigation.The aim of this work is to test in forested areas, the performance of the new automatic and objective methodology developed by Tarolli et al. (2012) for geomorphic features extraction (landslide crowns) from high resolution topography (LiDAR derived Digital Terrain Models – DTMs). The methodology is based on the detection of landslides through the use of thresholds obtained by the statistical analysis of variability of landform curvature. The study was conducted in a high-risk area located in the central-south Taiwan, where an accurate field survey on landsliding processes and a high-quality set of airborne laser scanner elevation data are available. The area has been chosen because some of the deep-seated landslides are located near human infrastructures and their reactivation is highly dangerous. Thanks to LiDAR’s capability to detect the bare ground elevation data in forested areas, it was possible to recognize in detail landslide features also in remote regions difficult to access. The results, if compared with the previous work of Tarolli et al. (2012), mainly focused on shallow landslides, and in a not forested area, indicate that for deep-seated landslides, where the crowns are more evident, and they are present at large scale, the tested methodology performs better (higher quality index). The method can be used to interactively assist the interpreter/user on the task of deep-seated landslide hazard mapping, and risk assessment planning of such regions.  相似文献   

10.
为服务地质调查数据管理需求,基于GIS平台,构建了岩溶地区水文地质环境地质信息管理系统,按标准对调查数据、空间数据进行集成整合,实现了岩溶数据资料信息的数字化、可视化、动态化管理。其系统主要功能模块包括调查数据管理模块、空间数据管理模块、数据核查管理模块、钻孔柱状图管理模块、基础数据管理模块、系统数据管理模块。   相似文献   

11.
Mine site characterization often results in the acquisition of geological, geotechnical and hydrogeological data sets that are used in the mine design process but are rarely co-evaluated. For a study site in northern Canada, bivariate and multivariate (hierarchical) statistical techniques are used to evaluate empirical hydraulic conductivity estimation methods based on traditional rock mass characterisation schemes, as well as to assess the regional hydrogeological conceptual model. Bivariate techniques demonstrate that standard geotechnical measures of fracturing are poor indicators of the hydraulic potential of a rock mass at the study site. Additionally, rock-mass-permeability schemes which rely on these measures are shown to be poor predictors of hydraulic conductivity in untested areas. Multivariate techniques employing hierarchical cluster analysis of both geotechnical and geological data sets are able to identify general trends in the data. Specifically, the geological cluster analysis demonstrated spatial relationship between intrusive contacts and increased hydraulic conductivity. This suggests promise in the use of clustering methods in identifying new trends during the early stages of hydrogeological characterization.  相似文献   

12.
Shallow landslides induced by heavy rainfall events represent one of the most disastrous hazards in mountainous regions because of their high frequency and rapid mobility. Recent advancements in the availability and accessibility of remote sensing data, including topography, land cover and precipitation products, allow landslide hazard assessment to be considered at larger spatial scales. A theoretical framework for a landslide forecasting system was prototyped in this study using several remotely sensed and surface parameters. The applied physical model SLope-Infiltration-Distributed Equilibrium (SLIDE) takes into account some simplified hypotheses on water infiltration and defines a direct relation between factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998. Two study areas were selected where a high density of shallow landslides occurred, covering approximately 1,200 km2. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch’s landfall. The agreement between the SLIDE modeling results and landslide observations demonstrates good predictive skill and suggests that this framework could serve as a potential tool for the future early landslide warning systems. Results show that within the two study areas, the values of rates of successful estimation of slope failure locations reached as high as 78 and 75%, while the error indices were 35 and 49%. Despite positive model performance, the SLIDE model is limited by several assumptions including using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this physically based model are discussed with respect to future applications of landslide assessment and prediction over large scales.  相似文献   

13.
Detailed local geological, geophysical, and hydrogeological investigations were carried out for the alluvial aquifer in the Kangavar basin, West Iran to delineate the architecture of different subsurface geological horizons using lithologs and generated vertical electrical sounding (VES) data. An attempt has also been made to estimate aquifer transmissivity from resistivity data. Forty VESs were recorded with the Schlumberger electrode configuration in the study area; 28 of these were selected for evaluation. The maximum current electrode spacing was 400–500 m. The data obtained were interpreted by computer iterative modeling with curve matching for calibration purposes. In order to ascertain the subsurface geological framework, the general distribution of resistivity responses of the geological formations was obtained and geoelectrical sections along a number of lines were prepared. Probable aquifer horizons from these sections were identified. The transmissivity of the unconfined aquifer was computed by determining the Dar-Zarrouk parameters (longitudinal unit conductance and transverse unit resistance) and were compared with the actual field transmissivity. The results showed a direct relation between aquifer transmissivity and modified transverse resistance.  相似文献   

14.
The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.  相似文献   

15.
H. Laubscher 《地学学报》1990,2(6):645-652
Gravity surveys of the past century established that mountains have roots, seismic refraction lines shot in the second half of this century confirmed the downbulge of the Moho under the Alps, and recent reflection traverses provided new details on the behaviour of crustal layers in the deep part of the Alps. However, geophysical data are ambiguous geologically. For models of the root in terms of rock distribution to be tectonophysically acceptable, they must be the retrodeformable result of kinematic sequence that fits the geological surface data. For a cross-section through the Swiss Alps based on refraction data and somewhat modified by the recent reflection traverses, a kinematic model compatible with large-scale geological data may be obtained by the superposition of three Neogene phases with alternating vergence. Although Alpine collision is largely dextrally compressive in the central Alps, the N-S component may be discussed in a cross-section. Particularly puzzling geophysical features include a high-velocity body in the middle crust and the disappearance of the layered foreland crust in the root. In order to account for these phenomena, it is proposed that the crustal root is interpreted as the result of complex reshuffling of middle and lower crustal masses as well as large-scale phase transformations. The mid-crustal highvelocity body is interpreted as a delaminated section of the lower crust of the Adria plate that was wedged into the middle crust of the Alps in the middle Miocene. The disappearance of the foreland lower crust is attributed to eclogitization attendant on the subduction of continental crust. Material balance estimates suggest that during Alpine collision large volumes of continental crust have disappeared through subduction.  相似文献   

16.
17.
A catastrophic earthquake with a Richter magnitude of 7.3 occurred in the Chi-Chi area of Nantou County on 21 September 1999. Large-scale landslides were generated in the Chiufenershan area of Nantou County in central Taiwan. This study used a neural network-based classifier and the proposed NDVI-based quantitative index coupled with multitemporal SPOT images and digital elevation models (DEMs) for the assessment of long-term landscape changes and vegetation recovery conditions at the sites of these landslides. The analyzed results indicate that high accuracy of landslide mapping can be extracted using a neural network-based classifier, and the areas affected by these landslides have gradually been restored from 211.52 ha on 27 September 1999 to 113.71 ha on 11 March 2006, a reduction of 46.24%, after six and a half years of assessment. In accordance with topographic analysis at the sites of the landslides, the collapsed and deposited areas of the landslide were 100.54 and 110.98 ha, with corresponding debris volumes of 31,983,800 and 39,339,500 m3. Under natural vegetation succession, average vegetation recovery rate at the sites of the landslides reached 36.68% on 11 March 2006. The vegetation recovery conditions at the collapsed area (29.17%) are shown to be worse than at the deposited area (57.13%) due to topsoil removal and the steep slope, which can be verified based on the field survey. From 1999 to 2006, even though the landslide areas frequently suffered from the interference of typhoon strikes, the vegetation succession process at the sites of the landslides was still ongoing, which indicates that nature, itself, has the capability for strong vegetation recovery for the denudation sites. The analyzed results provide very useful information for decision-making and policy-planning in the landslide area.  相似文献   

18.
19.
Gariano  S. L.  Verini Supplizi  G.  Ardizzone  F.  Salvati  P.  Bianchi  C.  Morbidelli  R.  Saltalippi  C. 《Natural Hazards》2021,106(3):2207-2225
Natural Hazards - Analyses of historical records of landslides and climate variables are useful tools to search for correlations between damaging landslide events and their triggers. In this work,...  相似文献   

20.
This paper presents a Geographic Information System (GIS)-based spatial analysis scheme to account for spatial patterns and association in geological thematic mapping with multiple geological data sets. The multi-buffer zone analysis, the main part of the present study, was addressed to reveal the spatial pattern around geological source primitives and statistical analysis based on a contingency table was performed to extract information for the assessment of an integrated layer. Mineral potential mapping using multiple geological data sets from Ogdong in Korea was carried out to illustrate application of this methodology. The results obtained from the case study indicated that some geochemical elements and residual magnetic anomaly dominantly affected spatial patterns of the mineral potential map in the study area and the dominant classes of input data layers were also extracted. This information on spatial patterns of multiple geological data sets around mines could be used as effective evidences for the interpretation of the integrated layer within GIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号