首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dumont d'Urville on the Antarctic coast is an area well known for the presence of strong katabatic winds. Since the austral summer 1979/80 a US-French joint experiment has been investigating the katabatic wind in this region. In early 1980 three automatic weather stations (AWS) were installed along a trajectory from Dome Charlie to Dumont d'Urville. Measurements from these stations include air pressure, temperature, wind speed and direction at ground level only. To supplement these data with information regarding the vertical structure and the advective changes in the katabatic flow, two airborne missions were undertaken in November 1980 along a route from Dome Charlie (Dome C) to Dumont d'Urville.In this paper measurements from these two flights are reported and comparisons made with theoretical models of katabatic flow. The data suggest that equilibrium katabatic flow was not established during these two flights. Downslope acceleration of the wind was particularly marked on 20 November, and a hydraulic jump was encountered in the vicinity of Dumont d'Urville. Relative humidity along the trajectory decreased as the coast was approached consistent with the rapid rise in adiabatic temperature. Simultaneously the absolute moisture content of the air increased indicative of net moisture influx. One source of the moisture increase is the evaporation of blowing snow especially in the intense wind region of the coastal slope near Dumont d'Urville.  相似文献   

2.
Summary Two methods of the evaluation of sensible heat flux are briefly presented from the view point of their application to micrometeorology. The comparison of sensible fluxes for coastal and inland stations is presented, in order to explain the influence of the marine atmosphere on these fluxes. They reach a maximum value in summer at the coastal stations, due to maximum wind speed and high convective activity developed by the influence of the marine atmosphere.  相似文献   

3.
Ground temperature, pressure and wind speed monthly averages in the area of the Italian Station at Terra Nova Bay, Antarctica, were analyzed for the period 1987–1991 by means of a network of nine AWS (automatic weather stations). Spatial configurations of temperature show a well-defined, relatively warm island in the area of Terra Nova Bay, between Drygalsky and Campbell ice tongues, throughout the year. A second warm island is present to the north along the coast, between Aviator and Mariner ice tongues, for most of the year. From February to March a rapid drop in temperature is observed at all stations. A strong thermal gradient develops during February, March, April and October, November, December, between the coastal region and inner highlands. The baric configuration follows the elevation of the area. Annual average pressure and temperature as functions of stations altitude show linear trends. Severe katabatic wind episodes are recorded at all stations, with wind speed exceeding 25 ms–1 and direction following the orographic features of the inner areas. Co-occurrences of these episodes were observed for stations located along stream lines of cold air drainage. The autocorrelation function of maximum wind speed time series shows wind persistence of 2–3 days and wind periodicity of about one week.  相似文献   

4.
More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relative wind speeds appear to be independent of general wind speed but dependent on wind direction. For perpendicular onshore winds the flow over the foredune is accelerated due to topographic changes and decelerated due to changes in surface roughness. Accelerations dominate over decelerations on the seaward slope. The pattern of acceleration and deceleration in relation to wind direction is more or less comparable for different foredunes, but the magnitudes differ. An increase in foredune height from 6 to 10m leads to an increase in speed-up near the top of the seaward slope from 110 to 150 per cent during onshore wind, but further increase of foredune height from 10 to 23m appears to have little effect, due to increased roughness and deflection of flow. Topography also influences the direction of the flow. Between beach and top, the flow deflects in the direction of the normal during onshore winds. During offshore winds the flow is deflected to the parallel. Near the dunefoot, deflection is always in the direction of the parallel, and increases with steeper topography. The maximum deflection near the dunefoot was 90°, over a 23 m high dune, observed during offshore winds. Patterns of erosion and sedimentation resulting from winds from different directions can be explained by the observed accelerations and decelerations. Owing to speed-up on the seaward front of the foredune, sand transport capacity of the wind increases, which results in erosion if vegetation is absent. During strong onshore wind, sand is lifted near the dunefoot and moves over the foredune in suspension. During weaker winds, vertical wind velocities do not exceed fall velocities of the sand grains, and most of the sand is deposited near the dunefoot.  相似文献   

5.
利用南极中山站至Dome A考察断面上3个自动气象站2005~2007年的观测资料和2008年夏季在中山站附近冰盖获取的湍流观测资料,应用空气动力学方法和涡动相关法计算分析了中山站至Dome A断面上近地层各种湍流参数(感热通量,潜热通量,湍流温度、湿度和速度尺度,地表粗糙度,大气稳定度及动量输送系数)的季节变化、日变...  相似文献   

6.
Analysis of turbidity measurements using a Volz sunphotometer, at three sites in India, two of them coastal and one inland, is reported. The sites are rural, far from industrial activity. After making an error analysis of the measurement technique the seasonal variations in turbidity parameters are interpreted in relation to the concurrent changes in relevant meteorological parameters like wind speed, wind direction, temperature and humidity. At coastal sites, the turbidity and the atmospheric salt concentration are found to be well correlated though the correlation coefficient varies between sites.  相似文献   

7.
Conditional sampling is used herein to examine the effect of fetch, stability, and surface roughness changes on wind speeds in the coastal zone. Using data from an offshore wind farm it is shown that at a distance of 1.2–1.7 km from the coast, up to a height of 20 m above the surface, differences in wind speed distributions from onshore and offshore masts are statistically significant for flow moving offshore under all stability conditions. In contrast, differences between the distribution of wind speeds at 38 and 48 m at masts located at the coast and in the coastal zone are not significant for flow moving offshore, indicating that flow at these heights is not fully adjusted to the change in surface roughness (land to sea). These findings are in accordance with calculations of the internal boundary layer (IBL) height which indicate that the IBL would frequently be below the two upper measurement heights at 1.2–1.6 km from the coast. The analyses presented here indicate that the wind speed distribution at a potential offshore wind farm site is not solely dependent on fetch (distance from the coast) but also depends on the stability climate.  相似文献   

8.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Atmospheric aerosols are a crucial link in the physical processes, involved in the formation and growth of precipitating clouds. Extensive aerosol measurements in surface air and in the lower troposphere were made at inland and coastal stations of different regions in India. At inland stations, the hygroscopic fraction of the total aerosol content is found to be a useful characteristic for distinguishing between the monsoon and summer airflow, as well as an indicator for a good or a badly developed monsoon. At coastal stations, however, this feature is not observed.Measurements as a function of height brought out that the aerosol varied widely in air over different seasons. During monsoon, the hygroscopic fraction was found highest at the cloud base level and was closely linked to the development of rain. Details of these investigations are presented.  相似文献   

11.
This study examines the spatial distribution of wind speed across a coastal dune system located at Jockey's Ridge State Park, North Carolina. The study area consists of a trough blowout through a foredune ridge, and the landforms that have developed behind the foredune. Wind speed and direction were measured simultaneously with single sensors placed at a fixed height in 13 locations across the blowout/dune complex. Fractional wind speed‐up is computed for sampling stations using data from a mast located on the beach as the reference. Results show that wind speeds were generally accelerated across the study site. The highest speeds were recorded on the foredune ridges adjacent to the blowout. Wind was accelerated through the center of the blowout throat and along the downwind lateral wall. Further into the blowout, at the base of the ramp to the depositional lobe, higher wind speeds shifted to the upwind lateral wall and continued to accelerate up the ramp as air exited to the rear. Significant variations in the wind speed‐up pattern were associated with different wind approach angles, with greater speed‐up occurring when the winds were aligned normal to the dune system. The speed‐up decreased as the angle of approach became increasingly oblique to the ridge. The patterns of wind speed‐up across the site point to the influence of topography on airflow. To quantify the relationship, measures of several topographic variables were obtained along sample transects running upwind from each sample station along flow lines representing different wind approach angles. Examination of correlation coefficients between wind speed‐up and topographic variables suggests that for groups of stations with similar topographic characteristics, 30–50% of the variations in speed‐up may be explained by the upwind topographic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The Tretyakov non-recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period. The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge-measured precipitation data over large regions of the former USSR and central Europe.  相似文献   

14.
Inertia theory and the finite element method are used to investigate the effect of marginal seas on coastal upwelling. In contrast to much previous research on wind-driven upwelling, this paper does not consider localized wind effects, but focuses instead on temperature stratification, the slope of the continental shelf, and the background flow field. Finite element method, which is both faster and more robust than finite difference method in solving problems with complex boundary conditions, was developed to solve the partial differential equations that govern coastal upwelling. Our results demonstrate that the environment of the marginal sea plays an important role in coastal upwelling. First, the background flow at the outer boundary is the main driving force of upwelling. As the background flow strengthens, the overall velocity of cross-shelf flow increases and the horizontal scale of the upwelling front widens, and this is accompanied by the movement of the upwelling front further offshore. Second, temperature stratification determines the direction of cross-shelf flows, with strong stratification favoring a narrow and intense upwelling zone. Third, the slope of the continental shelf plays an important role in controlling the intensity of upwelling and the height that upwelling may reach: the steeper the slope, the lower height of the upwelling. An additional phenomenon that should be noted is upwelling separation, which occurs even without a local wind force in the nonlinear model.  相似文献   

15.
The Langtang catchment is a high mountain, third order catchment in the Gandaki basin in the Central Himalaya (28.2°N, 85.5°E), that eventually drains into the Ganges. The catchment spans an elevation range from 1400 to 7234 m a.s.l. and approximately one quarter of the area is glacierized. Numerous research projects have been conducted in the valley during the last four decades, with a strong focus on the cryospheric components of the catchment water balance. Since 2012 multiple weather stations and discharge stations provide measurements of atmospheric and hydrologic variables. Full weather stations are used to monitor at an hourly resolution all four radiation components (incoming and outgoing shortwave and longwave radiation; SWin/out and LWin/out), air temperature, humidity, wind speed and direction, and precipitation, and cover an elevational range of 3862–5330 m a.s.l. Air temperature and precipitation are monitored along elevation gradients for investigations of the spatial variability of the high mountain meteorology. Dedicated point-scale observations of snow cover, depth and water equivalent as well as ice loss have been carried out over multiple years and complement the observations of the water cycle. All data presented is openly available in a database and will be updated annually.  相似文献   

16.
Accurate knowledge of the contacts between surface roughness and the resultant wind speed are important for climatic models, wind power meteorology, agriculture and erosion hazards especially on sand saltation in arid and semi-arid environments, where vegetation cover is scarce. In this study, synchronous measurements of three-dimensional wind speed below 5 m are carried out in three different surface roughness conditions in Minqin, China, and the difference in the turbulence statistics and the structure of the very large-scale motions (VLSMs) were revealed. The results show that the slope of the mean wind profile (MVP), the turbulent kinetic energy (TKE) and Reynolds stress increase with the surface roughness. The roughness seems to suppress the ejection events and the surface roughness will not only weaken the energy of the VLSMs, but also reduce the scale values of VLSMs near the wall. These influences may cause some changes regarding the dust transportation in streamwise and vertical directions during the sand and dust storm (SDS). That is, the decrease of the mean velocity near the ground will reduce the dust transportation in the streamwise direction and influence of the roughness on the ejection and sweep events will change the dust transportation in the vertical direction. Furthermore, the increase of roughness will weaken the scale and energy of VLSMs, which will lead to the decrease of the capacity of dust transportation. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
Accurate knowledge of the surface roughness and the resultant wind speed are important for many applications, such as climatic models, wind power meteorology, agriculture and erosion hazards, especially on sand dunes in arid and semi‐arid environments, where vegetation cover is scarce. In this study we aimed at quantifying the effects of vegetation cover and topography on surface roughness over a stabilizing dune field on the southern coast of Israel. Forty‐six wind measurements were made at various distances from the coastline, ranging from 10 to 2800 m, and z0 values were calculated from the wind measurements based on the ratio between the wind gust and the average wind speed. We estimated vegetation cover using the soil adjusted vegetation index (SAVI) from Landsat satellite images for the upwind sector at various lengths, ranging from 15 to 400 m, and based on digital elevation models and differential GPS field measurements we calculated the topographic variable of the relative heights of the stations. z0 values were positively correlated with the winter SAVI values (r = 0·87 at an upwind length of 200 m) and negatively correlated with the relative height (r = ?0·68 at an upwind length of 200–400 m for the inland dune stations). Using these variables we were able to create a map of estimated z0 values having an accuracy of over 64%. Such maps provide a better understanding of the spatial variability in both wind speed and sand movement over coastal dune areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
—?T-phase propagation from ocean onto land is investigated by comparing data from hydrophones in the water column with data from the same events recorded on island and coastal seismometers. Several events located on Hawaii and the emerging seamount Loihi generated very large amplitude T phases that were recorded at both the preliminary IMS hydrophone station at Point Sur and land-based stations along the northern California coast. We use data from seismic stations operated by U. C. Berkeley along the coast of California, and from the PG&;E coastal California seismic network, to estimate the T-phase transfer functions. The transfer function and predicted signal from the Loihi events are modeled with a composite technique, using normal mode-based numerical propagation codes to calculate the hydroacoustic pressure field and an elastic finite difference code to calculate the seismic propagation to la nd-based stations. The modal code is used to calculate the acoustic pressure and particle velocity fields in the ocean off the California coast, which is used as input to the finite difference code TRES to model propagation onto land. We find both empirically and in the calculations that T phases observed near the conversion point consist primarily of surface waves, although the T phases propagate as P waves after the surface waves attenuate. Surface wave conversion occurs farther offshore and over a longer region than body wave conversion, which has the effect that surface waves may arrive at coastal stations before body waves. We also look at the nature of T phases after conversion from ocean to land by examining far inland T phases. We find that T phases propagate primarily as P waves once they are well inland from the coast, and can be observed in some cases hundreds of kilometers inland. T-phase conversion at tenuates higher frequencies, however we find that high frequency energy from underwater explosion sources can still be observed at T-phase stations.  相似文献   

19.
A large-scale field experiment took place in the marginal ice zone in the Barents Sea in May 2009. Fresh oil (7000 L) was released uncontained between the ice floes to study oil weathering and spreading in ice and surface water. A detailed monitoring of oil-in-water and ice interactions was performed throughout the six-day experiment. In addition, meteorological and oceanographic data were recorded for monitoring of the wind speed and direction, air temperature, currents and ice floe movements. The monitoring showed low concentrations of dissolved hydrocarbons and the predicted acute toxicity indicated that the acute toxicity was low. The ice field drifted nearly 80 km during the experimental period, and although the oil drifted with the ice, it remained contained between the ice floes.  相似文献   

20.
基于大气边界层动量、感热和水汽通量的基本方程,定量地计算了波动海面的动量、感热和水汽通量。首先,应用Prandtl的混合长概念,推导出贴海面大气层中风速、位温和比湿的涡动交换率及其贴海面层厚度,并且证明了波面上位温或比湿贴海面层厚度与速度贴海面层厚度的比值,和平面上的相应比值完全相等。随后,利用空气动力学理论讨论了贴海面动量、感热和水汽输送的参数化问题。最后,对现有五种理论模式进行了比较说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号