首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近断层地震动中长周期、短持时和高能量的加速度脉冲将对高层摩擦摆基础隔震结构的减震性能产生不利影响,考虑土-结构相互作用(SSI效应)后的隔震结构将产生动力耦合效应,可能进一步放大隔震结构地震响应。为此,通过一幢框架-核心筒高层摩擦摆基础隔震结构的非线性地震响应分析,考察近断层脉冲型地震动作用下框架-核心筒摩擦摆基础隔震结构的层间位移角、楼层加速度和隔震层变形等响应规律,揭示隔震体系的损伤机理。基于集总参数SR (sway-rocking)模型,分析不同场地类别与不同地震动类型对隔震体系动力响应影响规律。结果表明:高层摩擦摆基础隔震结构在近断层脉冲型地震动作用下的减震效果相比普通地震动减震效果变差,楼层剪力、层间位移角和隔震层变形等超越普通地震动作用下的1.5倍;对于Ⅲ和Ⅳ类场地类别,考虑SSI效应使隔震结构的地震响应进一步放大,弹塑性层间位移角随着土质变软增大尤为明显。  相似文献   

2.
在近断层地震动下桥梁结构将发生较大反应,减隔震设计是减轻地震损伤的重要手段。提出了在桥梁双柱墩横桥向设置防屈曲支撑(BRB),在纵桥向设置铅芯橡胶支座(LRB)的双向减隔震体系。利用Midas Civil软件建立3种不同减隔震方式的桥梁结构模型:LRB仅单向,LRB双向与LRB联合BRB,运用非线性时程分析方法计算了桥墩反应(墩顶侧移角、残余位移角和曲率延性)、LRB支座变形和BRB的耗能特性等。结果表明:在近断层地震动输入下联合设置LRB和BRB的双向减隔震桥梁减震效果明显,相比其它2种方式,能有效降低墩柱的塑性变形及起到保护桥墩的作用。在横桥向,桥墩最大侧移角、残余位移角和最大曲率延性系数都显著降低。  相似文献   

3.
2008年汶川地震中江油市太白公园曲径桥上的石雕发生转动破坏现象,本文对这一转动现象进行了振动台模拟试验。模拟试验结果表明:① 在振动台三向加载1.5倍的汶川地震江油台记录的平动加速度后,模型的转动情况与实际观测的石雕转动情况比较一致;② 石雕的转动与石雕的非对称性、地震动输入角度和地震动的竖向作用有关;③ 加载竖向地震动作用后,石雕模型会发生摇摆现象,说明竖向地震动是造成模型扭转现象的重要原因,这也说明在分析相似震害现象时竖向地震动作用不可忽视。   相似文献   

4.
Permanent displacement of a bridge column can be directly measured during the inspection after near-fault earthquakes.However,the engineer needs to estimate the expected residual drift at the design stage to determine if the bridge seismic performance is satisfactory.The most direct method to estimate the residual displacement is nonlinear response history analysis,which is time consuming and cumbersome.Alternatively,an attractive but indirect method is generating estimated residual displacement spectra that depend on displacement ductility demand,column period,site conditions,and earthquake characteristics.Given the period and the expected displacement ductility demand for the column,the residual drift response spectra curves can be utilized to estimate the residual drift demand.Residual drift spectra that are applicable to RC bridge columns in different parts of the United States were developed based on nonlinear response history analyses using a comprehensive collection of recorded and synthetic near-fault ground motions and were linked to one-second spectral acceleration(S1)of the AASHTO maps.It was also found that the residual drift ratio is below one percent when S1 is less than 0.6 g.  相似文献   

5.
This paper focuses on the interstory drift ratio (IDR) demands of building structures subjected to near-fault ground motions having different impulsive characteristics based on generalized interstory drift spectral analysis. The near-fault ground motions considered include the idealized simple pulses and three groups of near-fault ground motions with forward directivity pulses, fling-step pulses and without velocity pulse. Meanwhile, the building systems are equivalently taken as shear-flexural beams with representative lateral stiffness ratios. The IDR distribution of continuous beams subjected to three groups of near-fault ground motions is acquired. It is illustrated that the maximum IDR shifts from the upper half to the lower half of buildings with an increase in lateral stiffness ratio. For long-period systems, the average IDR under impulsive ground motions is significantly greater than that under non-pulse motions. Finally, for moment-resisting frame buildings the forward directivity pulses amplify the drift response of higher modes, while the fling-step pulses excite primarily their contribution in the first mode and generate large deformation in the lower stories. The essential reason for this phenomenon is revealed according to the distinct property of near-fault impulsive ground motions and generalized drift spectral analysis.  相似文献   

6.
Among several different experimental techniques, used to test the response of structures and to verify their seismic performance, the shake table testing allows to reproduce the conditions of true effects of earthquake ground motions in order to challenge complex model structures and systems. However, the reproduction of dynamic signals, due to the dynamics of the shake table and of the specimen, is usually imperfect even though closed‐loop control in a shake table system is used to reduce these errors and obtain the best fidelity reproduction. Furthermore, because of the dynamic amplifications in the specimen, the signal recorded at desired locations could be completely different from the expected effect of shake table motion. This paper focuses on the development of practical shake table simulations using additional ‘open loop’ feedforward compensation in form of inverse transfer functions (i.e. the ratio of the output structural response to an input base motion in the frequency domain) in order to obtain an acceptable reproduction of desired acceleration histories at specific locations in the specimen. As the first step, a well‐known global feedforward procedure is reformulated for the compensation of the table motion distortions due to the servo‐hydraulic system. Subsequently, the same concept is extended to the table‐structure system to adjust the shake table input in order to achieve a desired response spectrum at any floor of the specimen. Implementations show how such a method can be used in any experimental facility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

8.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

9.
Following the 1995 Kobe earthquake, many RC bridge columns were demolished due to a residual drift ratio of more than 1.75 % even though they did not collapse. The residual drift ratio is a quantitative index for the performance objective of reparability in the bridge seismic design. Numerical models of the columns are built to study the factors that influence the residual displacement of RC bridge columns. In these models, both column bending and bar pulling out deformation are considered using the fiber column-beam element and zero-length section element, respectively. Then, nonlinear time history analyses are performed. The factors that influence column residual displacement, such as the characteristics of ground motion, the structural responses (the maximum lateral drift ratio and the displacement ductility factor), and the structural characteristics (the aspect ratio and the longitudinal reinforcement ratio) are investigated. It is found that the near-fault ground motion induces a larger residual drift ratio than the far-fault ground motion. The residual drift ratio becomes larger due to the increase of the maximum lateral drift ratio, the displacement ductility factor, and the aspect ratio. Further, a larger longitudinal reinforcement ratio can induce a larger residual drift ratio due to the contribution of the bar pulling out deformation.  相似文献   

10.
Design spectra including effect of rupture directivity in near-fault region   总被引:4,自引:1,他引:4  
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.  相似文献   

11.
Failure of one-story precast structures consisting of cantilever columns connected by simply supported beams was widely reported throughout the epicentral regions of the last devastating earthquakes in Turkey. As a single degree of freedom system, precast columns are designed by using the elastic spectrum given in the seismic code and by considering a seismic load reduction factor which takes into account the inelastic behavior of the columns under seismic loads. Although the existing seismic codes consider near-fault shaking effects in the development of elastic response spectra, they do not currently consider the increased inelastic demands that may occur during near-fault ground motion. The current study consists of nonlinear time history analyses of various hypothetical columns having geometric and mass properties which are being used in Turkish precast industry and the evaluation of damage indexes (DI) in terms of peak ground velocity (PGV) and peak ground acceleration (PGA) of the used strong ground motions. It is achieved that near-fault earthquakes create more damages on the columns. This might be one of the main reasons for the collapse of several one-storey precast buildings which were well designed according to the seismic codes in the district of existing faults. The obtained PGV versus DI charts prove that if one increase the sectional dimensions and/or longitudinal reinforcement ratio of the column, the possible damage from near-fault shaking effects could be reduced.  相似文献   

12.
This paper presents a methodology for constructing seismic design spectra in near-fault regions.By analyzing the characteristics of near-fault pulse-type ground motions,an equivalent pulse model is proposed,which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions.The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions,which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations.The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions.The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense.The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.  相似文献   

13.
Based on the the large shaking table test results on irregular section subway station structure in soft soil, an overall time-history numerical simulation is conducted to study the nonlinear dynamic interaction of the soil-irregular underground structure. Typical test results, including the acceleration of the soil, acceleration, and deformation of the structure, were analyzed. Satisfactory consistency between the simulation and test results is verified, and the difference between these results was discussed in detail. The maximum inter-story drift ratio was approximately 1/472 under input PGA ​= ​0.54 g. The strain responses of columns were significantly larger than those of the side walls and slabs. The components in the lower layers of the irregular subway station structure, particularly in the central columns, underwent cumulative damage. The research results could provide a simplified analysis method to quantitatively evaluate the damage of irregular underground structures in soft soil.  相似文献   

14.
为了获取近场永久位移,通常采用基线校正方法,对近场加速度记录进行基线校正并积分得到永久位移值,但这一结果主观性较强,其可靠性也往往缺乏验证。为了解决这一问题,本文提出了一种能产生包含永久位移振动过程的振动台实验方案,采用振动台加滑动机构的方法,模拟记录到永久位移台站测点的真实振动情况;在实验中分别采用加速度计、摄影测量方法分别直接得到加速度和位移时程,对加速度时程进行基线校正并积分得到位移时程,将其与直接获得的位移时程进行对比,以验证采用基线校正方法的有效性。实验结果表明,在实验室条件下采用现有的基线校正方法校正后,通过积分能得到可以接受的位移时程。  相似文献   

15.
System identification (SI) methods are used to determine empirical Green's functions (EGF) for soil intervals at the Port Island Site in Kobe, Japan and in shake table model tests performed by the Port and Harbor Research Institute (PHRI) to emulate the site during the 17 January 1995 Hyogo‐ken Nanbu earthquake. The model form for the EGFs is a parametric auto‐regressive moving average (ARMA) model mapping the ground motions recorded at the base of a soil interval to the top of that interval, hence capturing the effect of the soil on the through‐passing wave. The consistency of site response at Port Island before, during, and after the mainshock is examined by application of small motion foreshock EGFs to incoming ground motions over these time intervals. The prediction errors (or misfits) for the foreshocks, the mainshock, and the aftershocks, are assessed to determine the extent of altered soil response as a result of liquefaction of the ground during the mainshock. In addition, the consistency of soil response between field and model test is verified by application of EGFs calculated from the shake table test to the 17 January input data. The prediction error is then used to assess the consistency of behaviour between the two cases. By using EGFs developed for small‐amplitude foreshock ground motions, ground motions were predicted for all intervals of the vertical array except those that liquefied with small error. Analysis of the post‐liquefied ground conditions implies that the site response gradually returns to a pre‐earthquake state. Site behaviour is found to be consistent between foreshocks and the mainshock for the native ground (below 16 m in the field) with a normalized mean square error (NMSE) of 0.080 and a peak ground acceleration (PGA) of 0.5g. When the soil actually liquefies (change of state), recursive models are needed to track the variable soil behaviour for the remainder of the shaking. The recursive models are shown to demonstrate consistency between the shake table tests and the field with a NMSE of 0.102 for the 16 m to surface interval that liquefied. The aftershock ground response was not modelled well with the foreshock EGF immediately after the mainshock (NMSE ranging from 0.37 to 0.92). One month after the mainshock, the prediction error from the foreshock modeled was back to the foreshock error level. Copyright © 2001 John Wiley Sons, Ltd.  相似文献   

16.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
将参数化建模的方法引入减震结构的分析与设计中,通过预设目标和迭代优化计算,以天水市某高层住宅消能减震结构为例,寻找最优的阻尼器布置方案。为评估和验证该消能减震结构的抗震性能,分别采用Perform 3D和ETABS等软件分析结构在多遇和罕遇地震作用下的结构响应,分析结果表明:小震作用下,消能减震结构的楼层位移、层间位移角、楼层弯矩及楼层剪力均减小6.5%以上,达到了设计要求;大震作用下,结构框架柱、框架梁、剪力墙和阻尼器能够满足既定的性能要求,层间位移角满足规范限值,能够达到“大震不倒”的设计目标,研究结果为实际工程预设减震目标和阻尼器优化布置提供参考。  相似文献   

18.
2008年汶川地震近断层竖向与水平向地震动特征   总被引:12,自引:0,他引:12       下载免费PDF全文
选取分布在北川-映秀中央断裂两侧断层距120 km以内的40个强震动台站的记录,对汶川地震近断层地震动竖向和水平向加速度峰值、速度峰值、竖向和水平向加速度反应谱及谱比值进行了统计分析.研究表明:(1)地震动加速度峰值有显著的上盘效应,经验衰减模型的结果表明,在距地表破裂3~60 km的范围内,龙门山发震断层上盘一侧竖向与水平向的加速度峰值要比衰减模型得到的平均值大30%~40%.上盘的加速度峰值残差大部分是正值,而断层下盘残差大部分为负;水平地震动的东西分量幅值总体要大于南北分量,东西分量衰减相对较慢.(2)地震动长周期成分较弱,加速度反应谱值随周期增大而迅速减小,在周期1.0 s 时,即使在靠近中央断裂的最大加速度反应谱值也只有0.5 g;地震动加速度反应谱谱比值(竖向/水平向)沿龙门山断层周围的分布,在较长周期(T=0.2 s, 0.5 s, 1.0 s)与短周期(T=0.05 s, 0.1 s)有明显的不同.(3)近断层竖向地震动显著,地震动加速度峰值比在(竖向/水平向)可达1.4.在龙门山发震断层的上盘,地震动加速度峰值比整体上比下盘要大,竖向地震动尤为剧烈.部分近断层记录的地震动谱比值(竖向/水平向)在短周期(< 0.1 s)甚至超过1.5,统计分析还表明谱比值在短周期段(< 0.1 s)随断层距的增大而减小.  相似文献   

19.
为了研究地震波参数对柱顶隔震体系的水平向减震性能的影响,选取台湾集集地震中8条地震波作为输入,进行了柱顶隔震体系模型的振动台试验。分析了柱顶隔震体系的水平向动力响应特点,研究了地震波的PGV/PGA、卓越周期、平均周期和断层距及幅值对其水平向减震性能的影响,并进行了数值模拟的对比分析。结果表明:柱顶隔震体系的水平向减震性能良好。相同地震强度下地震波参数的PGV/PGA、卓越周期、平均周期和断层距对柱顶隔震体系水平向减震性能的影响明显,其中:PGV/PGA的影响程度最大,可以作为主要的分析指标;随着地震动强度的增大柱顶隔震体系的水平向减震效果更加明显,地震动强度达到一定幅值后,减震率缓慢下降;与远场地震相比,近场地震不利于柱顶隔震体系的水平向减震性能的发挥,脉冲型近场地震作用下其减震效果更差。振动台试验结果与数值模拟结果基本一致,表明分析结果的可靠性。  相似文献   

20.
刘必灯  郭迅 《中国地震》2019,35(2):226-237
西南交通大学建成的8m×10m/160t振动台是目前国内规模最大的振动台,对其运行质量和振动影响进行评价具有示范效应。探讨该振动台振动影响的现场实验于2017年初展开,实测结果表明:该振动台在工作频段内受控性能很好,对地震动信号重现度很高;台面满载满负荷运行时实验室建筑基础10m以内地面振动加速度实测值不超过6.6gal,振动速度小于2mm/s,不会对实验室厂房及附属办公建筑的安全、使用舒适性及人们正常工作、生活造成不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号