首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Limpopo Belt in Southern Africa has been used to demonstrate that modern-style continent-continent collision operated during the Late Archaean (2.6–2.7 Ga). We have studied the age and PT conditions of strike-slip tectonism along the important right-lateral Triangle Shearzone. Our results substantiate existing Proterozoic metamorphic mineral age data of prior uncertain significance. Using the PbPb and SmNd garnet chronometers and the ArAr step heating technique for amphibole, we have dated pre- and syn-tectonic metamorphic minerals at 2.2 and 2.0 Ga. Thus the Triangle Shearzone can now be regarded as an important Proterozoic suture. Examination of corresponding high-grade PT conditions, reaching 800°C at 9 kbar, indicates a clockwise metamorphic evolution with pronounced isothermal uplift. Although the evidence that thrusting of the Marginal Zones of the Limpopo Belt over the adjoining cratons occurred during the Late Archaean clearly remains, it is now very uncertain to which event the various PT paths obtained in the Limpopo Belt may be assigned. Therefore the question of whether the 2.6–2.7 Ga tectonism fits on its own a modern-style continental collision model remains open and has to be reassessed.  相似文献   

2.
The westernmost part of the Central Zone of the Limpopo Belt in Botswana is commonly interpreted as a frontal ramp of a westward extruding block or nappe sheet, related to a late Archæan Limpopo Orogeny. In this paper the structural observations from this area are reviewed and new geochronological results presented, in order to test the existing tectonic models. Two tectonometamorphic events can be distinguished. Neoarchæan granulite metamorphism (M1) is associated with the generation of voluminous granitic bodies at ca 2.6 Ga. The nature of the Archæan tectonometamorphism is difficult to interpret because of a major high-grade metamorphic overprint at 2.0 Ga, which is characterised by a complicated succession of ductile deformational phases. The structural patterns indicate that during the 2.0 Ga evolution of the Limpopo Belt convergence directions changed from north to northwest and west. During the same period metamorphic conditions gradually decreased from upper amphibolite-facies to greenschist-facies.The structural features in the western part of the Central Zone are not compatible with a frontal ramp geometry. Models proposing a single Neoarchæan Limpopo Orogeny do not account for the polyphase tectonometamorphic evolution in the Central Zone and are also rejected. This study suggests that a Proterozoic orogeny involving transpression best explains the geometries encountered in the western Limpopo Belt.  相似文献   

3.
The 1900–1700 Ma Waterberg Group in the main Waterberg fault-bounded basin consists of dominantly coarse siliciclastic red beds with minor volcanic rocks. The sedimentary rocks were deposited mainly by alluvial fans, fluvial braidplains and transgressive shallow marine environments, with lesser lacustrine and aeolian settings. Uplifted, largely granitic source areas were located along the Thabazimbi-Murchison lineament (TML) fault system in the south, and along the Palala shear zone in the northeast. Palaeoplacer titanomagnetite-ilmenite-zircon heavy mineral deposits, best developed in the Cleremont Formation in the centre of the basin, reflect initial fluvial reworking and subsequent littoral marine concentration. Coarse alluvial cassiterite placer deposits are found in the Gatkop area in the southwest of the basin, and appear to have been derived from stanniferous Bushveld Complex lithologies south of the TML. Hydrothermal zinc and U-Cu mineralisation in the Alma lithologies in the same area appears to be related to the TML fault system. Small manganese deposits and anomalous tungsten values occur in the south of the basin, where they are again closely spatially associated with the TML. Copper-barium mineralisation is found associated with dolerite dykes, and in stratigraphically controlled, inferred syngenetic settings. The most interesting of these apparently syngenetic occurrences is found within green coloured reduced mudrocks and inferred volcanic rocks, at an unconformity developed within the overall red bed sequence of the Waterberg Group, adjacent to the TML in the southwest of the basin. The most important potential mineralisation in the main Waterberg basin thus encompasses shoreline placer Ti and the possibility of substantial sediment-hosted copper deposits. Received: 31 May 1996 / Accepted: 17 February 1997  相似文献   

4.
Contrary to previously suggested north-directed thrust emplacement of the central zone of the Limpopo mobile belt, we present evidence indicating west-directed emplacement. The central zone differs from the marginal zones in rock types, structural style and isotopic signature and is an allochthonous thrust sheet. It is bounded in the north by the dextral Tuli-Sabi shear zone and in the south by the sinistral Palala shear zone which are crustal-scale lateral ramps. Published gravity data suggest that the lateral ramps are linked at depth and they probably link at the surface, in a convex westward frontal ramp, in the vicinity of longitude 26°30′E in eastern Botswana. Two phases of movement, the first between 2.7 and 2.6 Ga and the second between 2.0 and 1.8 Ga. occurred on both the Tuli-Sabi and the Palala shear zones.  相似文献   

5.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

6.
A new mechanism is suggested for the generation of the interference fold pattern which characterizes the Limpopo Mobile Belt. The mechanism is directly related to shear movement along the Tuli-Sabi Shear Zone, renamed the Tuli-Sabi Straightening Zone. The mobile belt is regarded as a taphrogenic lineament (McConnell, 1974) and its generation is compatible with the tectonic environment active in Proterozoic times according to Sutton and Watson (1974). Field evidence shows that the Tuli-Sabi Straightening Zone dies out in Botswana at Moshakabela, and it is reasoned that the mobile belt as a whole also disappears in this vicinity. It does not extend into central and western Botswana beneath the Karroo and Kalahari cover. Detailed examination of ERTS-1 imagery of northeastern Botswana strengthens these deductions. The Tuli-Sabi Straightening Zone and the characteristic fold patterns of the mobile belt can be seen quite clearly on the satellite imagery. Furthermore, the Tuli-Sabi Straightening Zone appears to be displaced southwards at the international boundary between Botswana and Rhodesia. The existence of a fold belt trending about N150° superimposed on the Limpopo Mobile Belt in the west of the area is postulated which is not the Shashe Mobile Belt (Crockett, 1967).  相似文献   

7.
出露于扬子北缘神农架地区的神农架群是扬子地区保留比较完整的中元古代地层,其上部被青白口系马槽园群不整合覆盖.本文报导了神农架群砂屑白云岩、凝灰岩及侵入神农架群中的基性岩墙锆石及斜锆石U-Pb年龄.测年表明,神农架群下部大岩坪组碎屑锆石在1.4Ga、1.8Ga、2.0Ga、2.7Ga出现统计峰值;神农架群野马河组凝灰岩锆石U-Pb年龄为~1220Ma;侵入于石槽河组的基性岩墙斜锆石及锆石U-Pb年龄分别为1115Ma和1083Ma.根据新的测年结果,结合区域地质分析,我们得出以下几点主要结论:(1)可以将神农架群的沉积时代严格限定在1.4~1.1Ga之间,并推测神农架群碎屑物主体来自扬子克拉通古老基底,另有部分碎屑物质可能来自华夏地块或劳伦的前寒武纪基底;(2)神农架群和马槽园群之间的角度不整合面大致确定在1.1~1.0Ga之间,这一不整合面可能代表了扬子与华夏之间最早发生拼合的构造事件,是Rodinia超大陆汇聚事件的构造响应;(3)侵入于石槽河组的基性岩墙侵入时代为1115~1083Ma,这一期基性岩侵入事件在劳伦、非洲、澳大利亚以及南极洲都有记录.神农架地区的这一时期基性岩侵入事件是Rodinia超大陆汇聚过程中的产物还是和该时期全球性的超级地幔柱有关尚需要进一步研究;(4)神农架群沉积时代的确定,为建立我国1.4~1.1Ga期间的标准地层剖面提供了可能的候选剖面.(5)神农架群大岩坪组~1.45Ga碎屑锆石年龄峰为华夏地块在Columbia超大陆中位于劳伦和南极之间的观点提供了新依据.  相似文献   

8.
双溪坞群、双桥山群等为江南古岛弧浙赣段的前寒武纪基底地层。依据基底地层建造的差异及蛇绿岩套和碰撞花岗岩等的分布,可将浙赣段江南古岛弧沿赣东北断裂划分为怀玉地体和九岭地体。怀玉地体基底地层建造以火山岩占主导,10—13亿年是该地体的重要成壳时期。九岭地体基底地层建造以浊流复理石占主导,14—16亿年为该地体的重要成壳时期。距今9亿年左右两地体相互碰撞拼接,与此同时,华夏古陆向江南古岛弧碰撞,至~8亿年、完成碰撞对接,开始震旦系盖层沉积。  相似文献   

9.
扬子地块东南缘沉积岩的Nd同位素研究   总被引:15,自引:1,他引:15  
周泰禧  徐祥 《沉积学报》1995,13(3):39-45
扬子地块东南缘上溪群分布区及其周边沉积岩的Nd同位素研究结果,支持存在一条苏浙皖古生代裂陷槽(或江南深断裂)的观点。上溪群以北直至长江边所分布的震旦系-古生代的盖层沉积岩,其Nd模式年龄有两组,表明物源区不同。裂陷槽以北,沉积岩的物源区为Nd模式年龄约2.0~2.1Ga的扬子物源区;以南的沉积岩表现出明显的幔源物质混染,显示出元古代岩浆活动的影响,而上溪群分布区以南直到江绍断裂附近主要表现上溪物源区的影响,华夏地块古老基底岩石则无显著贡献。  相似文献   

10.
As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.  相似文献   

11.
华北克拉通古元古代地层划分与对比   总被引:2,自引:2,他引:0  
华北克拉通古元古代地层分布广泛,主要集中于胶辽吉带、中部带和西部孔兹岩带三个带状区域。近年来华北克拉通古元古代地层研究取得了很大的进展,根据作者的研究和前人的大量工作,本文对华北克拉通主要的古元古代地层的组成、时代、形成的构造背景等进行了总结。发现华北克拉通古元古代底部2.47~2.35Ga间的地层普遍缺失,反映了华北克拉通地质演化历史上的一个静寂时期。~2.3Ga在华北克拉通中条山及鲁山等地发育了少量的冷口变质火山岩以及上太华岩群变质地层。大量的年代学资料表明华北克拉通以往认为时代大致始于2.5Ga的滹沱群、甘陶河群、辽河岩群、绛县群、中条群等众多地层实际年龄多集中在2.2~1.9Ga之间,而且大多数地区所划分的不同的古元古代地层在时间上是并置或叠合的,没有新老或上下关系,仅在中条山地区和五台地区的古元古代地层具有从老到新连续演化的特征。目前,古元古代早期2.4~2.3Ga的地层研究程度还不高,形成的构造背景存在岛弧和裂谷两种不同的认识,我们倾向于活动大陆边缘环境,推测在鲁山-华山-中条山-吕梁山一带存在古元古代早期的岛弧与活动大陆边缘的相互作用。2.2~1.9Ga这一阶段的地层除孔兹岩系外,通常为变质火山-沉积岩系,且火山岩基本都具有双峰式火山岩特征,表明它们应该形成于伸展环境,但对伸展的机制还存在裂谷与弧后盆地的争议,根据作者等的工作本文倾向于它们形成于陆内裂谷环境,反映了华北克拉通可能从2.2Ga开始经历了强烈的伸展活动,最终导致了原有基底的裂解。  相似文献   

12.
辽东半岛南辽河群锆石U-Pb年代学及其地质意义   总被引:7,自引:13,他引:7  
李壮  陈斌  刘经纬  张璐  杨川 《岩石学报》2015,31(6):1589-1605
本文报道了辽东半岛古元古代胶-辽-吉活动带南辽河群中变质火山岩和沉积岩的锆石U-Pb年代学数据。变质流纹岩的锆石具典型的岩浆振荡环带结构和较高的Th/U比值(0.3),锆石U-Pb年龄为~2.2Ga,该年龄可代表其原岩形成年龄,在误差范围内与古元古代辽吉花岗岩年龄一致,表明辽吉花岗岩并不是辽河群的基底。变质玄武岩的锆石阴极发光强度较弱、弱分带或无分带,同时具较低的Th/U比值(0.1),为典型的变质成因锆石,锆石U-Pb年龄为~1.9Ga,代表其变质时代。变质沉积岩的碎屑锆石年龄主要介于1981~3520Ma之间:峰期年龄为2033Ma和2092Ma的锆石年龄信息暗示辽东半岛至少存在一期2000~2100Ma的岩浆事件,并且该时期的中酸性岩浆岩是南辽河群沉积岩的一个重要物源;峰期年龄为2155Ma、2446Ma、2509Ma、2594Ma、2668Ma、2790Ma、3356Ma、3467Ma和3520Ma的锆石年龄信息,区域上与古元古代辽吉花岗岩、辽河群火山岩及太古宙基底年龄相吻合,暗示它们为南辽河群沉积岩提供了重要物源。沉积岩中最年轻的碎屑锆石U-Pb年龄为~2.0Ga,可代表其沉积时的最大年龄。所以,辽河群火山-沉积-变质的时限为2.2~1.9Ga,其演化时间约300Myr。结合前人有关辽东半岛前寒武纪岩石的研究成果,本文研究认为胶-辽-吉活动带的形成演化与弧-陆碰撞有关,而不是许多人坚持的裂谷环境。  相似文献   

13.
山西吕梁地区是华北克拉通保存古元古界变质表壳岩良好地区, 其中的岚河群在吕梁山北部岚县南北两侧大量出露, 由碎屑岩、碳酸盐岩夹少量基性火山岩等多个沉积旋回的沉积组合构成, 经历绿片岩相浅变质作用改造, 保留了大量原始沉积构造, 是探讨该群沉积 特征、形成时代及与其它表壳岩群关系的理想对象。 对岚河群 3 件样品的碎屑锆石 LA-ICP-MS U-Pb 定年, 获得底部含砾砂岩最年轻碎屑锆石 2.2 Ga 的峰值年龄, 该群经历了 1.87 Ga 的 区域变质作用, 因而限定岚河群沉积于 2.2~1.87 Ga 之间。 碎屑锆石年龄谱显示了~2.2 Ga 的 主峰期和~2.3 Ga 及太古代中晚期等较小峰期年龄, 指示主要源自古元古代陆壳物质源区, 它们的主峰期年龄锆石与吕梁地区同期岛弧花岗岩锆石 Hf 同位素特征一致, 且其沉积组合反映了物源区活动性较强, 证明岚河群形成于活动陆缘岛弧相关的沉积盆地。 野鸡山群下部的 青杨树湾组和白龙山组沉积组合与岚河群沉积地层序列类似, 它们均形成于 2.2 Ga 左右, 说明野鸡山下部沉积与岚河群相同, 也形成于活动陆缘岛弧环境的沉积盆地, 分别代表了盆地同时异相的沉积产物。 野鸡山群上部程道沟组与黑茶山群沉积序列类似, 具有造山过程相关盆地的磨拉石建造组合特征, 它们均形成于 1.85 Ga 之后, 代表与碰撞造山过程相关前陆盆地快速堆积。 因此, 3 个岩群表壳岩的沉积演化揭示了华北克拉通中部~2.2 Ga 俯冲汇聚相关的活动陆缘岛弧环境, 在~1.85 Ga 转为陆-陆碰撞造山演化过程。  相似文献   

14.
在扬子板块西缘断续分布有多套变质沉积岩系,厘定区内不同岩石单元的时代对于探讨扬子西缘的构造演化具有重要意义。本文对出露于扬子板块西缘米易垭口地区的五马箐组变沉积岩以及侵入其中的片麻状黑云二长花岗岩体进行了锆石LA-ICP-MS U-Pb定年和Lu-Hf同位素分析。结果表明:区内五马箐组的沉积时代介于1.19~1.01Ga,其地层归属为会理群而非康定群,位于五马箐组之下的“冷竹关组”并非变沉积地层而是一套片麻状黑云二长花岗岩体。五马箐组碎屑锆石年龄存在~1.56Ga、~2.50Ga两个主要峰值以及~1.43Ga、~1.68Ga、~1.87Ga、~2.32Ga、~2.68Ga五个次要峰值,推断其物质来源主要为扬子板块西南缘的撮科杂岩、隐伏的或还暂未发现的太古代基底岩石、同时期岩浆岩和早期变沉积岩的再循环。碎屑锆石的ε_(Hf)(t)值在~1.7Ga发生了显著变化,暗示扬子板块西缘的构造体制由陆壳汇聚向裂谷活动转变,且在~1.56Ga处于裂谷岩浆活动的峰期。花岗岩体正的ε_(Hf)(t)值反映出扬子板块西缘在~1.0Ga有一次新生陆壳生长事件,可能是格林威尔造山后的伸展塌陷构造背景下裂谷岩浆活动的产物。  相似文献   

15.
Namibia's passive continental margin records a long history of tectonic activity since the Proterozoic. The orogenic belt produced during the collision of the Congo and Kalahari Cratons in the Early Proterozoic led to a zone of crustal weakness, which became the preferred location for tectonism during the Phanerozoic. The Pan-African Damara mobile belt forms this intraplate boundary in Namibia and its tectonostratigraphic zones are defined by ductile shear zones, where the most prominent is described as the Omaruru Lineament–Waterberg Thrust (OML–WT). The prominance of the continental margin escarpment is diminished in the area of the Central and Northern Zone of the Damara belt where the shear zones are located. This area has been targeted with a set of 66 outcrop samples over a 550-km-long, 60-km-broad coast-parallel transect from the top of the escarpment in the south across the Damara sector to the Kamanjab Inlier in the north. Apatite fission track age and length data from all samples reveal a regionally consistent cooling event. Thermal histories derived by forward modelling bracket this phase of accelerated cooling in the Late Cretaceous. Maximum palaeotemperatures immediately prior to the onset of cooling range from ca. 120 to ca. 60 °C with the maximum occurring directly south of the Omaruru Lineament. Because different palaeotemperatures indicate different burial depth at a given time, the amount of denudation can be estimated and used to constrain vertical displacements of the continental crust. We interpret this cooling pattern as the geomorphic response to reactivation of basement structures caused by a change in spreading geometry in the South Atlantic and South West Indian Oceans.  相似文献   

16.
Thermochronological data from the Songpan-Ganze˛Fold Belt and Longmen Mountains Thrust-Nappe Belt, on the eastern margin of the Tibetan Plateau in central China, reveal several phases of differential cooling across major listric thrust faults since Early Cretaceous times. Differential cooling, indicated by distinct breaks in age data across discrete compressional structures, was superimposed upon a regional cooling pattern following the Late Triassic Indosinian Orogeny. 40Ar/39Ar data from muscovite from the central and southern Longmen Mountains Thrust-Nappe Belt suggest a phase of differential cooling across the Wenchuan-Maouwen Shear Zone during the Early Cretaceous. The zircon fission track data also indicate differential cooling across a zone of brittle re-activation on the eastern margin of the Wenchuan-Maouwen Shear Zone during the mid-Tertiary, between 38 and 10 Ma. Apatite fission track data from the central and southern Longmen Mountains Thrust-Nappe Belt reveal differential cooling across the Yingxiu-Beichuan and Erwangmiao faults during the Miocene. Forward modelling of apatite fission track data from the northern Longmen Mountains Thrust-Nappe Belt suggests relatively slow regional cooling through the Mesozoic and early Tertiary, followed by accelerated cooling during the Miocene, beginning at ca. 20 Ma, to present day.

Regional cooling is attributed to erosion during exhumation of the evolving Longmen Mountains Thrust-Nappe Belt (LMTNB) following the Indosinian Orogeny. Differential cooling across the Wenchuan-Maouwen Shear Zone and the Yingxiu-Beichuan and Erwangmiao faults is attributed to exhumation of the hanging walls of active listric thrust faults. Thermochronological data from the Longmen Mountains Thrust-Nappe Belt reveal a greater amount of differential exhumation across thrust faults from north to south. This observation is in accord with the prevalence of Proterozoic and Sinian basement in the hanging walls of thrust faults in the central and southern Longmen Mountains. The two most recent phases of reactivation occurred following the initial collision of India with Eurasia, suggesting that lateral extrusion of crustal material in response to this collision was focused along discrete structures in the LMTNB.  相似文献   


17.
The Lufilian Belt is of geological significance and economic importance due to rich CuCo mineralisation in the Katanga Province of the Democratic Republic of Congo and the Copperbelt of Zambia. Though thorough exploration has yielded much information on the mines districts, the understanding of the belt as a whole appears, to some extent, historically charged and confused. In the first part of this article, basic knowledge and assumptions are reviewed and existing models critically assessed. Results include recognition of standard lithostratigraphies of the Katanga Supergroup comprising the Roan, Mwashia, Lower and Upper Kudelungu Groups in the Copperbelt and Katanga, a lower limit for the onset of deposition at about 880 Ma, and a major orogenetic event involving northeast directed thrusting (Lufilian Orogeny) at 560-550 Ma. The depositional history of the Lufilian Belt was controlled by continental rifting leading to formation of a passive continental margin. Continental rifting related to the dispersal of Rodinia began ca 880 Ma ago and was accompanied by magmatism (Kafue rhyolites: 879 Ma; Nchanga Granite: 877 Ma; Lusaka Granite: 865 Ma). Differential subsidence of the northwestward propagating rift soon allowed invasion by the sea advancing from the southeast, and subsequent development of marine rift-basin and platform domains. The standard stratigraphies for the Roan Group are restricted to the platform domain that bordered the rift-basin on its northeastern side. This domain included the Domes region of the Lufilian Belt and extended southeastwards into the northern Zambezi Belt. The platform was differentiated into a carbonate platform (barrier) represented by the Bancroft Subgroup (previously ‘Upper Roan’) in Zambia and Kambove Dolomite Formation in Katanga and a lagoon-basin (lower Kitwe Subgroup/Zambia; Dolomitic Shale Formation/Katanga) with mudflats (R.A.T. Subgroup/Katanga) and a siliciclastic margin towards the hinterland. The mineralised horizons of the ‘Ore Formation’ in Zambia and ‘Series des Mines’ in Katanga are related to temporarily anoxic conditions prevailing in the Roan Lagoon-Basin which had a southwest-northeast extent of ca 400 km. The lagoon-basin was subsequently filled by clastics derived from mainly northeastern sources (upper Kitwe Subgroup/Zambia; Dipeta Subgroup/Katanga).Possibly due to continental rupture in the southeastern, more advanced, segment of the rift and concomitant differential movement in the rupturing plate, the Kundelungu Basin started to open during deposition of the Mwashia Group. Opening of the extensional basin was accompanied by rifting, rapid subsidence of the affected platform segment and widespread mafic magmatism, which lasted until deposition of the Lower Kundelungu Group. The elevated margins of the rapidly subsiding Kundelungu Basin offered favourable conditions for inland glaciation during the Sturtian-Rapitan global glaciation epoch. The diamictites of the Grand Conglomát are thus dated at ca 750 Ma.Tectonogenesis in the Lufilian and Zambezi Belts is related to ca 560-550 Ma collision of the ‘Angola-Kalahari Plate’ (comprising the Kalahari Craton and southwestern part of the Congo Craton) and the ‘Congo-Tanzania Plate’ (comprising the remaining part of the Congo Craton) along a southeast-northwest trending suture linking up the southern Mozambique Belt with the West Congo Belt. Collision was accompanied by northeast directed thrusting involving deep crustal detachments and forward-propagating thrust faults that developed in platform and slope deposits below a high level thrust. In the Domes region, the platform sequence was detached from its basement and displaced for ca 150 km into the External Fold-Thrust Belt of Katanga. The large displacement was enhanced by fluids liberated from evaporite-rich mudflat deposits of the R.A.T. Subgroup.In the Zambezi Belt, northeast directed thrusting was succeeded by southwest directed backfolding and backthrusting, due to greater shortening or thickening of the thrust wedge. The Mwembeshi Shear Zone accommodated greater shortening in the Zambezi Belt relative to the Lufilian Belt by sinistral transcurrent movement. The Mwembeshi Shear Zone is a reactivated pre-existing zone of weakness in the lithosphere of possibly Palæoproterozoic age. There is no evidence of Neoproterozoic collision along this zone in the Lufilian Belt/Zambezi Belt domain.  相似文献   

18.
对冈底斯带的研究历来聚焦于岩浆弧,对弧间盆地的较少关注导致火山—沉积序列缺乏精细化研究。冈底斯带古近纪地层划分方案是基于并沿用东段林周、南木林地区的层序格架,即林子宗群与日贡拉组垂向叠置不整合接触,在带上其他地区适用时常产生矛盾,制约了基础地质及资源评价工作。通过系统实测孔隆—达果地区古近纪地层剖面,选取剖面中火山岩进行LA-ICP-MS锆石U-Pb测年,以详实的同位素年代学数据搭建精细年代地层格架,以沉积学、地层学研究分析充填演化过程,恢复火山—沉积盆地古地理。结果显示冈底斯造山隆升剥蚀并被扇沉积体系记录的过程,从晚白垩世早期断续持续至古近纪;以火山岩和/或以沉积岩为主的盆地,发育时限均下延至约70 Ma,暗示岩浆作用与隆升剥蚀对雅鲁藏布洋俯冲的响应几乎同时启动;火山—沉积盆地发育贯穿了整个增生造弧事件,以印亚大陆初始碰撞后的沉积间断为界,分为70~56 Ma和56~40 Ma两期,火山岩与沉积岩同时发育,以时空上的负消长关系占主导地位,表现为剖面上交互或夹层,并受喷发中心、沉积中心的横向迁移约束,产生了地层发育时限的空间变化;受晚白垩世末—古近纪雅鲁藏布洋北向俯冲及印亚大陆碰撞过程影响,持续的造山隆升及岩浆活动的周期性强弱变化约束了盆地发育样式,火山—沉积序列在区域上延展不稳定,垂向序列产生多样性。因此,本文提出层型剖面上火山岩与碎屑岩垂向叠置序列关系不能普适地代表整个冈底斯带,同期火山岩与沉积岩存在空间上快速相变过渡,应使用更为精细年代格架下的空间展布关系,指导冈底斯带弧间盆地地层划分,探讨印亚大陆碰撞的火山—沉积响应过程。  相似文献   

19.
《China Geology》2021,4(4):616-629
The Mesoproterozoic Dongchuan Group that is widely exposed in Yimen area, central Yunnan Province is a series of sedimentary sort of low-grade metamorphic rocks interbedded with volcanic rocks, which are closely related to the early tectonic evolution of the Earth. However, its formation era, sedimentary filling sequence, and geotectonic characteristics have always been in dispute. In this study, several rhyolitic tuffaceous slate interlayers with a centimeter-level thickness were found in the previously determined Heishan Formation of the Dongchuan Group located to the western part of Yimen-Luoci fault zone. This paper focuses on the study of the rhyolitic tuffaceous slate in Qifulangqing Village, Tongchang Township, Yimen County. LA-ICP-MS zircon dating was conducted, achieving the crystallization age of magma of 2491 ± 15 Ma and the metamorphic ages of about 2.3 Ga, 2.0 Ga, and 1.8 Ga for the first time. Meanwhile, according to in-situ Hf isotope analysis, the zircon εHf(t) values were determined to range from −3.0 to 7.6, with an average of 2.7. Furthermore, the first-stage Hf model age (TDM1) was determined to be 2513−2916 Ma, indicating that the provenance of the rhyolitic tuffaceous slate is the depleted mantle or juvenile crust between the Middle Mesoarchean and the Late Neoarchean. Therefore, it is believed that the strata of the slate were deposited in the Late Neoarchean, instead of the Mesoproterozoic as determined by previous researchers. Accordingly, it is not appropriate to group the strata into the Mesoproterozoic Dongchuan Group. Instead, they should be classified as the Maolu Formation of the Neoarchean Puduhe Group given the lithologic association and regional information. Furthermore, the magma ages of 2491 ± 15 Ma are highly consistent with the eras of the large-scale Late Neoarchean orogenic magmatic activities on the northern margin of the Yangtze Craton, and thus reflect the orogenic process consisting of subduction and collision from Late Neoarchean to Early Paleoproterozoic. The magmatic activities during this period were possibly caused by the convergence of the supercontinent Kenorland. Meanwhile, the metamorphic ages of 2.3 Ga, 2.0 Ga, and 1.8 Ga are highly consistent with three metamorphic ages of 2.36 Ga, 1.95 Ga, and 1.85 Ga of the northern margin of the Yangtze Craton, indicating that the strata experienced Paleoproterozoic tectonic-thermal events. The study area is located on the eastern margin of Qinghai-Tibet Plateau, and thus was possibly re-transformed by magmatism subjected to the subduction of the Meso-Tethys Ocean during the Early Cretaceous. The discoveries made in this study will provide strong petrological and chronological evidence for analyzing the early crustal evolution of the Yangtze block.©2021 China Geology Editorial Office.  相似文献   

20.
The Singhbhum Mobile Belt (SMB) of the eastern Indian shield represents a roughly east-west-trending arcuate belt of folded supracrustals overlying the granite-greenstone basement of the Singhbhum-Orissa Craton along its northern, eastern and western margins and is bounded by the Chotanagpur Gneissic Complex to further north. The radiometric ages of the basement Singhbhum and equivalent granites and the intrusive anorogenic Mayurbhanj granite pluton constrain the time of evolution of this mobile belt between 3.12 and 3.09 Ga. Hence, the SMB supracrustals also known as Singhbhum Group, is late Mesoarchaean in age and not Proterozoic as thought earlier. The evolution of the SMB was followed by emplacement of some major basic igneous rocks within or adjacent to the supracrustals. These include Simlipal volcanics at >3.09 Ga on the SMB, Mayurbhanj gabbro along with Mayurbhanj granite at 3.09 Ga along the marginal part of the craton near the SMB, and the Dalma volcanics on the SMB along with the Dhanjori volcanics adjacent to SMB at 2.80 Ga. The 2.80 Ga old basic volcanics is also associated with emplacement of some small granite plutons occurring along the marginal part of the craton, one of them, the Tamperkola granite intrudes the SMB. The >3.09 Ga onward igneous activities along the marginal part of Singhbhum-Orissa Craton took place essentially under anorogenic tectonic setting before being affected by a major metamorphism at 2.50 Ga, which is recorded on the Dalma volcanics and on some small granite pluton occurs along the marginal part of the craton. The Jagannathpur and stratigraphically equivalent Malangtoli volcanics, occurring within the Singhbhum-Orissa Craton at the west, were erupted at 2.25 Ga. The boundary between the SMB supracrustals and the Singhbhum-Orissa Craton is demarked by a prominent shear zone known as the Singhbhum Shear Zone, which shows multiple reactivation, the oldest being at 3.09 Ga, followed by subsequent reactivation during Palaeo- and Mesoproterozoic periods at 2.2, 1.8, 1.6-1.5, 1.4 and 1.0 Ga respectively. The Singhbhum Group and the adjacent Chotanagpur Gneissic Complex appear to have evolved from a near shore syn-rift and a distal post-rift stable shelf sedimentary assemblages respectively, which were deposited without any stratigraphic break in a marine basin existed in the present north of the Singhbhum-Orissa Craton. Both of these assemblages were deformed and metamorphosed together during Proterozoic at 2.5 to >2.3 Ga, 1.6 Ga and 1.0 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号