首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对南海西沙一次冷空气引发强风天气进行分析。分析表明:高空低涡东移南下,横槽转竖,强冷空气爆发,大举南下入侵处于低纬的西沙,是引起西沙强风天气的主要环流背景。探讨850 hPa变温场分布特征指出:负变温的演变、强弱分布等与地面气压场演变特征有关,地面气压场中等压线的密集区与强风关系明显。温度平流场分布演变与地面气压梯度、变压梯度有较明显的一致性,冷平流可增强地面气压梯度和变压梯度,是西沙强风生成与发展的重要原因。  相似文献   

2.
舟山群岛海域一次大风过程的诊断分析   总被引:1,自引:0,他引:1  
对舟山群岛一次冷空气大风过程进行了诊断分析.结果表明:大风产生在典型的贝湖脊型横槽形势下,高空横槽的转竖使得冷空气从低层到高层开始向南爆发.冷空气南下与东海低压强烈发展造成的强气压梯度以及中低层冷平流的作用是造成强风的重要原因.高低层散度场的耦合以及高空锋区过境时产生的动力下沉运动造成强烈的动量下传,进一步加大了地面风速.  相似文献   

3.
王锐  刘彬贤 《海洋预报》2021,38(6):82-92
利用NECP再分析资料、HMW-8卫星红外4-1通道数据、卫星可见光云图和地面常规观测数据,对2020年3月7-8日渤海海域出现的大范围海雾形成的天气背景和低层温度湿度特征进行分析.结果 表明:500 hPa浅槽东移至渤海上空,槽前西南气流为海上输送暖湿空气,槽后弱冷空气在东移过程中受山脉阻挡,沿山脉南下,率先为海面带...  相似文献   

4.
利用长时间的逐日再分析资料和澳大利亚气象局提供的MJO指数,研究了MJO对我国南海冬季风异常的影响和过程。结果表明,随着MJO的对流中心从西印度洋进入西太平洋,南海海面风场出现偏南风-东北风-偏南风异常的振荡现象,表明南海冬季风阶段性的间断和活跃,最明显的偏南风异常和东北风异常分别位于MJO第8—2位相和第5—6位相。通过合成MJO各位相下500 h Pa东亚大槽异常和200 h Pa东亚急流异常,我们进一步证实南海冬季风活跃期(MJO第5—6位相),东亚大槽加深,高空急流加强,我国华南沿海上空的反气旋式环流异常,东南边缘的引导气流利于冷空气南下直达南海。相反,在南海冬季风间断期(MJO第8—2位相),东亚大槽和高空急流均减弱,不利于冷空气的南下。对200 h Pa垂直速度的分析表明,MJO深对流活动的东移,调整东亚局地Hadley环流异常,在高空表现为反气旋/气旋式环流异常交替发展东移,最终消失在北太平洋地区。一方面通过科氏力的作用,引起东亚高空急流的异常,进而影响东亚大槽的位置和强度,从而影响冷空气的南下;另一方面直接加剧南海海面风场异常的南北向振荡。因此,在做南海冬季风季内变化特别是大风天气过程的延伸期预报时,热带MJO活动可以作为一个重要因子考虑在内。  相似文献   

5.
应用观测资料和MICAPS3气象资料显示系统,分析研究了近十年山东沿海7级以上偏北大风的特征。对两年内36次区域性大风个例,以地面影响系统为主,把偏北大风分为四种类型:冷锋型、温带气旋型、回流冷空气型和北上热带气旋型,建立了偏北大风的天气学模型。分月份、分类型统计分析了偏北大风期间地面气压梯度、锋后冷高压强度、锋前低压强度、高低压之间的气压差、850 hPa锋区强度、850hPa偏北风风速、850hPa24h变温,给出了阈值和平均值;分析研究了各类型9级以上偏北大风气象要素的临界值。对各种类型偏北大风的物理量空间结构和形成机理进行了研究,结果表明:冷锋偏北大风在中低层为较强的下沉运动,低层辐散,有高空动量下传,偏北大风主要是快速南下的冷空气、下沉运动造成的辐散风和高空动量下传的共同作用;气旋型偏北大风在高空为正涡度、低层辐合、整层为上升运动,北大风主要取决于快速旋转的气旋性环流和向气旋中心的辐合运动;回流型偏北大风的中高空为上升,近地面层为下沉,偏北大风主要是低层快速南下的冷空气的水平运动。  相似文献   

6.
一次冷空气强风的成因分析   总被引:7,自引:3,他引:7  
王雷 《海洋预报》2005,22(4):96-101
文章分析了2004年12月底的一次冷空气强风过程,揭示了冷空气南下与东海低压的发展造成的气压梯度、高低空较强的冷平流以及中低空辐合辐散差异引起的动力强迫下沉作用所造成的动量下传是造成本次猛烈强风的主要原因.最大强风发生区域和发生时间既与低层和中层700hPa分别转为辐散和辐合中心对应,又与中低层700hPa以下正好处于下沉速度中心附近对应.  相似文献   

7.
陈淑琴  唐跃  黄辉 《海洋预报》2006,23(1):65-69
主要使用常规填图资料计算各种物理量,对一次“晴天暴”大风过程进行诊断分析,结果表明此次大风的形成机制是:在强盛的西北急流作用下,急行性干冷锋快速东移南下,形成中低层的强温度梯度和地面气压梯度,高空冷平流与地面加热共同作用,形成大的温度层结递减率,产生不稳定层结,引起垂直动量交换,因此地面出现强风。最后总结出此类大风的预报思路。  相似文献   

8.
"2008.4.9"江淮气旋后部大风过程诊断分析   总被引:2,自引:0,他引:2  
项素清 《海洋预报》2009,26(4):37-43
受江淮气旋入海和冷空气共同影响,2008年4月9日白天浙江省中北部内陆地区出现7~9级,沿海地区出现9~11级偏北大风。通过物理量诊断分析发现,高空槽前正涡度平流和强暖平流使地面江淮气旋发展,降水凝结潜热释放形成反馈机制有利于气旋发展。气旋入海后引导后部冷空气南下,大的气压梯度和变压梯度形成地面大风。同时,9日白天的晴好天气使底层受热,有利于高空动量下传,加大了地面的风速。  相似文献   

9.
通过对一个明显后向传播雷暴和一个无明显传播特征雷暴的环境场进行对比,分析环境场条件对雷暴传播运动的影响。结果表明:二者高空均受冷涡后部西北气流控制,有中空急流,低层受暖温度脊影响,气温较高,傍晚前后受短波槽影响,在鲁西北地区产生对流天气;后向传播雷暴的环境场水汽条件较好,大气斜压特征明显,近地面层高温高湿,θse锋区位于对流层中层,中层干空气与低层冷空气入侵,二者共同作用是雷暴的产生机制;无明显传播特征雷暴的环境场水汽条件较差,θse锋区位于850 hPa以下,对流层低层干冷空气与暖湿空气交绥是雷暴的产生机制;雷暴易发生在水汽通量散度中心北侧梯度较大的区域,主回波后部大气为不稳定层结且具有辐合中心、相对湿度较大的特征,这是产生新对流单体的关键;若雷暴区有湿平流,雷暴的下游方向有水汽辐合中心,且辐合中心具有斜压特征,有利于雷暴新生,反之,则不利于雷暴新生。  相似文献   

10.
一次副热带高压边缘切变线暖区暴雨特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规气象观测资料、NCEP 1°×1°再分析资料以及卫星和雷达资料,对2018年6月25—26日副热带高压(简称"副高")边缘切变线暖区暴雨的大尺度环流背景、雨带的移动与传播、中尺度特征以及温湿特征等方面进行分析。结果表明:此次暖区暴雨过程是在副高稳定维持,500 hPa西风槽东移,并有低空急流配合,低空暖切变线触发不稳定能量释放的有利背景下产生的;暴雨落区位于700 hPa暖切变线和925 hPa暖切变线之间;暴雨期间,小尺度对流单体在鲁南地区触发,云顶亮温t_(bb)≤-60℃,并沿引导气流向东北方向移动;强降水区域有多个强回波中心持续影响,有明显的"列车效应",强回波持续时间长;红外云图能很好地反映天气系统的发生、发展和消亡,而水汽图像上色调暗区不明显,冷空气活动较弱;低层暖湿气流强烈发展,是造成此次暖区暴雨过程层结不稳定的主要原因;暴雨的水汽源地是孟加拉湾和南海,且强降水期间,随着西南暖湿气流的增强,水汽通量有一个跃增现象;云顶t_(bb)≤-70℃覆盖的区域、水汽通量散度负值中心可以作为暖区暴雨落区预报的参考点。  相似文献   

11.
利用NCEP(National Centers for Environmental Prediction)再分析格点资料和HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory Model)模式对2012年1月1—10日发生在北太平洋的一个爆发性气旋族进行了研究,并对气旋族的两个主要成员Parent Low(气旋A)和Child Low(气旋B)的演变过程和时空结构进行了详细分析,发现在气旋A和气旋B的爆发性发展阶段,200hPa高空的辐散区向气旋输送正涡度平流,气旋处于500hPa大槽前部,系统轴线西倾,低层有强冷平流向气旋中心输送并与锋面结合,温度梯度较大。气旋西侧较强北风携带的冷空气与冷锋前来的暖湿空气相遇,为气旋的发展提供有利条件。从形势场上看,气旋B爆发性发展主要是依靠气旋A所提供的环流背景场。气旋A在高空为气旋B提供正涡度平流,在低空通过环流将冷平流输送到气旋B内部,使气旋B低层斜压性增加。在气旋A和气旋B的向东移动和"互旋"过程中,两者之间水汽输送通道逐步建立。东移过程中,气旋A不断向气旋B进行水汽输运,使得气旋B系统内部水汽含量增加,为气旋的发展提供能量。利用后向追踪法对气旋B中心附近的空气进行追踪发现,在1 000m以下,来自气旋A的空气占到总数的一半以上,可以认为气旋A是气旋B低层水汽来源的主要途径之一。  相似文献   

12.
利用NCEP/NCAR再分析数据和其他常规观测数据,对湖北省两类典型极端降水型(南北气流汇合型、南北槽叠加型)的天气背景及气象因子异常特征进行分析,结果表明:南北气流汇合型500 hPa上形成南北气流汇合形势,低层切变线南侧南风发展异常强盛,地面上冷锋入暖槽形成静止锋,动力因子(850 hPa涡度、200 hPa散度)和水汽因子(大气可降水量)异常特征显著;南北槽叠加型500 hPa上形成南北槽叠加形势,低层或边界层形成显著低涡切变,地面上暖低压强烈发展,动力因子(200 hPa散度、925 hPa涡度)和不稳定因子(700 hPa温度平流)异常度比例偏高。最后给出了两类集天气背景与气象因子异常度配置于一体的极端降水天气概念模型。  相似文献   

13.
利用常规观测资料、NCEP再分析资料、多普勒雷达资料等对2015年2月25日辽宁东南部一次强降雪过程进行分析。结果表明:此次强降雪过程发生在低空切变线东侧暖湿区对应高空急流出口区左侧的辐散区内,有强的水汽辐合中心;地面偏南气流受山前地形抬升作用在强降水区形成风向辐合和850 hPa以下急流中心,是造成强降雪的主要原因之一;暴雪过程开始前6 h出现温度平流随高度减小的配置,假相当位温空间分布上锋区的形成,有利于不稳定层结的建立; 8~12 h前正涡度平流、中低层风向辐合带、近地面冷空气层的建立以及次级环流的形成加强了上升运动,对强降雪预报具有很好的指示作用;在降水相态是雨或雨夹雪时,雷达回波最大强度达到40~45 dBZ,而强降雪时回波强度为20~25 dBZ;当大连本站850 h Pa温度以及1 000 hPa与850 h Pa两层等压面之间的厚度处于雨雪转换临界值时,大连南部为雨或雨夹雪,北部为雪,此时出现强降雪,回波高度基本在6 km以下,最强回波25~35 dBZ维持在1 km以下,近地层为弱偏北风,与其上的西南风在边界层形成切变层,将暖湿气流抬升,为强降水提供动力条件。  相似文献   

14.
利用常规气象观测资料、NCEP/NCAR再分析资料和多普勒天气雷达资料,对2016年8月6——8日潍坊一次强对流天气的成因和预报误差进行了分析,结果表明:1) 500 hPa冷涡底部低槽、850 hPa低涡切变线和地面倒槽是主要影响天气系统,数值预报对此次天气过程的影响系统预报偏差大,而预报员对数值预报依赖程度高是此次预报失误的主要原因; 2) 850 hPa以下强的水汽辐合是强降水发生的重要条件,低层辐合和高层辐散配置导致的强垂直上升运动是暴雨产生的动力机制,位势不稳定因中高层的冷空气入侵下沉得以加强; 3)列车效应和强回波维持少动是造成短时强降水的重要回波特征,逆风区的发展和移动对于判断强降水的落区有指示作用,多普勒雷达反演风场中的中尺度辐合线是导致局地强降水发生的直接原因; 4)风廓线雷达水平风场可以连续地反映降水过程中风场垂直结构及其变化,降水发生前探测高度明显升高,中高层冷空气侵入时间与强降水的时段相对应。  相似文献   

15.
“罗莎”台风造成浙江特大暴雨的过程分析   总被引:1,自引:0,他引:1  
0716号台风"罗莎"于2007年10月7日下午15:30在浙江省苍南县霞关镇附近的浙闽交界处登陆。受"罗莎"台风的影响,浙江省出现暴雨到大暴雨,过程平均降雨量全省达163.0mm。利用NCEP/NCAR1°×1°再分析格点资料、浙江省自动站降水数据和MICAPS的Ki与Ky指数资料(浙江省部分),对由0716号台风"罗莎"造成的浙江大暴雨到特大暴雨过程的大环流天气形势演变、动力条件、水汽输送及物理量特征等进行诊断研究。结果表明,在10月6~9日"罗莎"台风影响浙江期间,欧亚500hPa中高纬度为平直环流,乌拉尔山以西为高压脊,从河西走廊至中原地区有一移动性冷槽,西太平洋副热带高压逐渐加强,呈东西向带状,位置偏北强度偏强,江淮以南地区为副热带高压控制,脊线位于30°N附近;在对流层中、低层(气压为700hPa、850hPa)有明显的冷温槽,途经河西走廊、河套地区、江淮和长江中下游地区,7日14时至8日14时地面冷锋与"罗莎"台风倒槽在浙江相互作用,形成了台风外围受冷空气侵入的特定环境场,为浙江大暴雨到特大暴雨的形成创造了条件。"罗莎"台风螺旋云带中含有大量水汽从东海向浙江大陆输送,10月6日20时至8日14时,从东海到浙江大部出现强的水汽通量大值区,最大水汽通量出现在10月7日02时低层(气压为850hPa),中心为40g/(s.hPa.cm)以上的水汽通量大值区出现在东海,低层高含水量从东海向浙江陆地持续输送,时间长达42h,为本次大暴雨到特大暴雨提供了有利的水汽条件,诊断得出,大气柱可降水量达65kg/m2时可出现大到暴雨,大气柱可降水量达70kg/m2时可出现特大暴雨。从流场、散度场和垂直速度场发现,台风环流区域内低层的强上升运动为本次大暴雨到特大暴雨提供了上升运动的促发机制,高层辐散区与中低层台风北侧倒槽强烈辐合区叠加,使得中低层的辐合更为强烈,这都有利于台风北侧暴雨的维持和加强;台风环流域内的垂直上升运动区有一个"增厚"过程。分析温度平流发现,6~8日在浙江上空(气压为550hPa以下),有明显的冷暖平流交汇,冷空气进入台风外围与台风携带的暖湿空气相遇,台风环流呈西冷东暖状态,加上低层的辐合机制,促使斜压对流不稳定能量的加大,并释放出最大有效的位能,使得大于35℃的Ki指数和4~6个单位的Ky指数高值区覆盖浙江全省,造成大气强烈的上升运动,导致台风倒槽降雨量的加强。  相似文献   

16.
利用自动气象站观测资料、青岛雷达产品以及“天衍”雷达拼图产品和ERA5再分析资料,对台风“巴威”外围致山东半岛西部强降水过程的中尺度特征及环境条件进行分析。结果表明:1)“巴威”在黄海北上期间,其外围暖湿气流与冷空气在山东半岛西部到鲁东南交汇,对流层中低层形成东北—西南向深厚的切变线,高层处于高空急流入口区右侧,低层辐合、高层辐散有利于产生强降水,强降水位于850 hPa切变线及其右侧偏东风一侧。2)前期降水回波先后表现为两条有组织的线形回波带,其形成、发展和移动与850 hPa切变线密切相关;后期切变线右侧偏东风气流中γ中尺度辐合不断触发单体新生,青岛即墨境内组合反射率因子CR、差分反射率因子ZDR、差分相移率KDP均显著增大,导致即墨南泉连续两个小时雨强大于100 mm•h-1。3)切变线附近垂直上升运动深厚,850 hPa以下水汽通量辐合较强,为中尺度系统提供了触发条件和水汽条件;850 hPa,θse暖舌位置与切变线一致,暖舌中心达352 K,为中尺度系统发生、发展提供了能量条件;对流层中高层弱冷空气对触发强对流天气起到一定作用。4)850 hPa以下水汽通量辐合量值≤-8×10-7 g•cm-2•hPa-1•s-1的区域与暴雨区基本吻合,水汽通量辐合中心及垂直上升运动中心越低越有利于出现强降水。  相似文献   

17.
一次爆发性东海低压发展引起的海上强风分析   总被引:1,自引:0,他引:1  
项素清 《海洋预报》2007,24(4):20-25
2006年6月1日受突然发展的东海低压影响,舟山全市普降暴雨或大暴雨,舟山沿海出现9~11级东到东北大风。通过分析发现:台湾附近的地面倒槽在华南沿海西南气流的引导下北抬,到舟山海域正好遇上高空深厚的低涡东移,高、低空系统的垂直耦合是地面低压发展的关键;中低层的强温度平流造成抬升运动,产生降水并释放潜热,也是低压发展不可或缺的条件。  相似文献   

18.
台风“森拉克”转向前异常路径分析   总被引:2,自引:0,他引:2  
本文利用常规资料,应用天气学方法,对菲律宾以东洋面生成的0813号台风"森拉克"移动特点进行了分析。结果表明,中高纬度短波槽相继东移引起西北太平洋副高短期东西震荡,导致台风蛇行北上;短波槽东移后,中高纬度维持平直西风环流,冷空气活动较弱,没有长波槽的调整和短波槽的东移,使副高西进后得以维持是台风移动路径西折的根本原因;850 hPa等压面上高压东移和台湾地形共同作用是台风强风区建立和转移的关键,台风不对称结构对预报台风移动路径西折具有预示作用。850 hPa相对湿度的变化对台风移动路径有一定的指示意义,台风未来有沿着对流层低层相对湿度湿轴移动的趋势,对流层低层相对湿度干轴对台风移动有阻挡作用。  相似文献   

19.
利用2010—2014年地面观测站(包括288个海岛站、380个沿海气象站、28个浮标站、37个船舶站、53个气象观测塔、13个海上平台站、9个沿海风廓线仪等)和高空气象观测站资料,采用天气学分型和统计分析方法,对2010—2014年285次中国近海6级及以上大风天气个例进行了分析,将近海的大风天气过程归纳为冷空气型、温带气旋型和热带气旋型3种类型。其中冷空气型又分为小槽东移型、小槽发展型和横槽转竖型;温带气旋型又分为东海气旋型、黄渤海气旋型和蒙古气旋型。这些分型可为海上大风预报预警提供天气学背景参考依据。  相似文献   

20.
本文利用2000—2018年山东省大气监测自动站的降水观测资料以及美国国家环境预报中心与美国国家大气研究中心(NCAR/NCEP)再分析的高空月平均资料、降水月平均资料以及逐日降水资料,分析了不同季节山东省极端降水的时空分布的基本特征,以及异常大气环流对极端降水的影响。结果表明,极端降水对山东降水的影响主要集中在夏季,山东省的东南沿海地区表现更为明显。在500hPa上,极端降水次数偏多季的环流形势表现为AO负位相,在50°N的中纬度西风上波动较为显著,降水概率随之增大。根据极端降水持续时间,将极端降水分为第一类和第二类极端降水,若200hPa上南亚高压偏东,500hPa上副高西伸,中纬度西风带的槽脊振幅明显偏大;同时,在850hPa上,高纬度波长较长,有利于冷空气直接南下和暖湿的水汽输送带交汇于山东省上空,则有利于产生第一类极端降水,反之,则易产生第二类极端降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号