首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Indus Fan records the erosion of the western Himalayas and Karakoram since India began to collide with Asia during the Eocene, 50 Ma. Multi-channel seismic reflection data from the northern Arabian Sea correlated to industrial well Indus Marine A-1 on the Pakistan Shelf show that sedimentation patterns are variable through time, reflecting preferential sedimentation in deep water during periods of lower sea-level (e.g., middle Miocene, Pleistocene), the diversion of sediment toward the east following uplift of the Murray Ridge, and the autocyclic switching of fan lobes. Individual channel-levee systems are estimated to have been constructed over periods of 105–106 yr during the Late Miocene. Sediment velocities derived from sonobuoys and multi-channel stacking velocities allow sections to be time-depth converted and then backstripped to calculate sediment budgets through time. The middle Miocene is the period of most rapid accumulation, probably reflecting surface uplift in the source regions and strengthening of the monsoon at that time. Increasing sedimentation during the Pleistocene, after a late Miocene-Pliocene minimum, is apparently caused by faster erosion during intense glaciation. The sediment-unloaded geometry of the basement under the Pakistan Shelf shows a steep gradient, similar to the continent-ocean transition seen at other rifted volcanic margins, with basement depths on the oceanward side indistinguishable from oceanic crust. Consequently we suggest that the continent-ocean transition is located close to the present shelf break, rather than >350 km to the south, as previously proposed.  相似文献   

2.
The seismic stratigraphy, evolution and depositional framework of a sheared-passive margin, the Durban Basin, of South East Africa are described. Based on single-channel 2D seismic reflection data, six seismic units (A-F) are revealed, separated by major sequence boundaries. These are compared to well logs associated with the seismic data set. Internal seismic reflector geometries and sedimentology suggest a range of depositional regimes from syn-rift to upper slope and outer shelf. Nearshore and continental facies are not preserved, with episodic shelf and slope sedimentation related to periods of tectonic-induced base level fall. The sedimentary architecture shows a change from a structurally defined shelf (shearing phase), to shallow ramp and then terminal passive margin sedimentary shelf settings. Sedimentation occurred predominantly during normal regressive conditions with the basin dominated by the progradation of a constructional submarine delta (Tugela Cone) during sea-level lowstands (LST). The earlier phases of sedimentation are tectonic-controlled, however later stages appear to be linked to global eustatic changes.  相似文献   

3.
Seismic and sequence stratigraphic architecture of the central western continental margin of India (between Coondapur and south of Mangalore) has been investigated with shallow seismic data. Seismic stratigraphic analysis defined nine seismic units, that are configured in a major type-1 depositional sequence possibly related to fourth-order eustatic sea-level changes, comprising regressive, lowstand, transgressive and highstand systems tracts. The late-Quaternary evolution of the continental margin took place under the influence of an asymmetric relative fourth-order sea-level cycle punctuated by higher frequency cycles. These cycles of minor order were characterised by rapid sea-level rises and gradual sea-level falls that generated depositional sequences spanning different time scales. During the regressive periods, dipping strata were developed, while erosional surfaces and incised valleys were formed during the lowstands of sea level. Terraces, v-shaped depressions, lagoon-like structures observed on the outer continental shelf are the result of the transgressive period. In the study area we have recognised a complex erosional surface that records a long time span during the relative sea-level fall (regressive period) and the following sea-level lowstand and has been reworked during the last transgression. We also infer that sedimentation processes changed from siliciclastic sedimentation to carbonate sedimentation and again to siliciclastic sedimentation, marking an important phase in the late-Quaternary evolution of the western continental shelf of India. We attribute this to an abrupt climate change at the end of the oxygen isotope stage 2, between the Last Glacial Maximum and the Bølling-Allerod event (14?000 yr BP). This sensitive climate change (warming) favoured the formation of reefs at various depths on the shelf, besides the development of Fifty Fathom Flat, a carbonate platform on the outer shelf off Bombay developed prior to 8300 yr BP. The highstand systems tracts were deposited after the sea level reached its present position.  相似文献   

4.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

5.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

6.
《Marine Geology》2005,219(4):207-218
A vertical succession of five composite sequences has been identified within the upper 100 m of the outer Bengal Shelf by means of high-resolution multi-channel seismic data. Each sequence consists predominantly of up to 100 km long and some 10 m thick forced regression systems tracts. The internal reflection pattern of the regressive units show mainly prograding oblique clinoforms. Intervening transgressive systems tracts are represented by seismically transparent or chaotic layers. On the outer shelf three of the sequences cause shelf aggradation and retrogradation, and two of them cause mainly shelf progradation. Based on the hierarchy of systems tracts, their calibration by comparison with eustatic sea-level curves and reconstructed paleoshoreline positions the composite sequences are interpreted as eccentricity driven eustatic 4th order (Milankovitch) cycles with a periodicity of about 100 ky. Internal unconformities mark cycles of 5th or higher order. An average subsidence of the outer shelf is estimated to be less than 0.4 mm/year during the last 345 ky. The correlation between the shelf growth pattern and sea-level fluctuations is consistent with the enhanced deposition on the eastern Bengal submarine fan from 465 to 125 ky B.P., as was observed by other authors.  相似文献   

7.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

8.
Seismic characterization of Eocene-Oligocene heterozoan carbonate strata from the Browse Basin, Northwest Shelf of Australia, defines marked progradation of nearly 10 km. Stratal terminations and stacking subdivide the succession into mappable seismic units. Stratal architecture and seismic geomorphology varies systematically through the succession.Individual surfaces, discerned by toplap, onlap, and truncation, outline sigmoidal to tangential oblique clinoforms with heights of ranging from 350 to 650 m and maximum gradients between 8 and 18°. Sigmoidal clinoforms can include aggradation in excess of ∼200 m, prograde more than 500 m, and have slopes characterized by inclined, wavy to discontinuous reflectors that represent ubiquitous gullies and channels. In contrast, the overlying tangential oblique clinoforms include downstepped shelf margins, limited on-shelf aggradation (<100 m) and toplap, subdued progradation (<500 m), and continuous parallel inclined reflectors on the slope. Wedges of basinally restricted reflectors at toe of slope onlap surfaces of pronounced erosional truncation or syndepositional structural modification. The succession includes repeated patterns of seismic units that onlap, aggrade, and prograde, interpreted to represent sequence sets and composite sequences.The associations of shelf aggradation, shelf-margin progradation, and slope channeling within sigmoidal seismic units and the less marked progradation and channeling within tangential oblique seismic units contrast with the classic sequence model in which sediment delivery to the slope and pronounced progradation is favored by limited shelf accommodation. This distinct divergence is interpreted to reflect the prolific heterozoan production across the shelf during periods of rising and high base level when the shelf is flooded, perhaps enhanced by downwelling. Comparison with purely photozoan systems reveals similarities and contrasts in seismic stratigraphic heterogeneity and architecture, interpreted to be driven by distinct characteristics of heterozoan sedimentary systems.  相似文献   

9.
Based on an integrated analysis of seismic, well logging and paleontological data, the sequence architecture and depositional evolution of the northeastern shelf margin of the South China Sea since Late Miocene are documented. The slope deposits of the Late Miocene to Quaternary can be divided into two composite sequences (CS1 and CS2) bounded by regional unconformities with time spans of 3–7 Ma, and eight sequences defined by local unconformities or discontinuities with time spans of 0.8–2.3 Ma. Unconformities within CS1 feature shelf-edge channel erosion, while in CS2 they form truncations at the top of the shelf margin as prograding complexes and onlap contacts against the slope.Depositional systems recognized in the slope section include unidirectionally migrating slope channels, slope fans or aprons, shelf-edge deltas and large-scale slope clinoforms. CS1 (Late Miocene to Pliocene) is characterized by development of a series of shelf-margin channels and associated slope fan aprons. The shelf-margin channels, oriented mostly NW-SE, migrate unidirectionally northeastwards and intensively eroded almost the entire shelf-slope zone. Two types of channels have been identified: (1) broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; and (2) deeply incised and confined unidirectionally migrating slope channels. They might be formed by gravity flow erosion as bypassing channels and filled mostly with along-slope current deposits. Along the base of the shelf slope, a series of small-scale slope fans or fan aprons are identified, including three depositional paleo-geomorphological elements: (1) broad or U-shaped, unconfined erosional-depositional channels; (2) frontal splays-lobes; and (3) non-channelized sheets. CS2 (Quaternary) consists mainly of a set of high-angle clinoforms, shelf-margin deltas and lower slope unidirectionally migrating channels.The relative sea level changes reflected in the sequence architecture of the study area are basically consistent with Haq's global sea level curve, but the development of regional unconformities were apparently enhanced by tectonic uplift. The development of high-angle (thick) clinoforms in the Quaternary may be attributed to a high sediment supply rate and rapid tectonic subsidence. The formation of the unidirectionally migrating channels appears to have resulted from the combined effects of the northeastward South China Sea Warm Current (SCSWC) and downslope gravity flow. The formation of the slope channels in the outer-shelf to shelf-break zone may be predominately controlled by bottom current, whereas those developed along the middle to lower slope zone may be dominated by gravity flow.  相似文献   

10.
An ultra-high-resolution seismic study of the eastern Bengal Shelf with the parametric narrow-beam echosounder Parasound allows the interpretation of late Quaternary depositional patterns in terms of seismic stratigraphy. Accommodation space was still present on the outer shelf during the last lowstand, where a prograding delta developed in the western survey area. Oolitic beach ridges were later formed on top of this lowstand delta. Farther east, large parts of the shelf were exposed to subaerial erosion and a river system extended seaward across the area. A subaqueous highstand delta prograded southwards following the maximum transgression about 7,000 years ago. Its foreset beds exhibit acoustic voids very likely generated by sediment liquefaction, possibly caused by episodic energetic events such as major cyclones and/or earthquakes. Bottomset sediments extend seaward close to the shelf break in the west, whereas no Holocene sediments cover the outer shelf in the east.  相似文献   

11.
The Galicia-Minho Shelf features two large mud patches, the Douro and the Galicia Mud patches. These are recent sediment bodies that have accumulated under a combination of conditions including: (1) abundant supplies of sediment; (2) morphological barriers that act as sediment traps; and (3) hydrographic conditions that favour the accumulation of fine sediment in these sinks. This paper describes the mechanisms controlling the deposition of the fine-grained sediment depositions and the processes that result in resuspension processes on the Galicia-Minho Shelf.Fine-grained sediments are provided from discharges from the river basins on the southern sector of the shelf, mainly the Douro and Minho rivers. Sediments are exported from river estuaries onto the shelf during episodic flood events. In contrast, most of the sediments originating from the Galician hinterland fail to contribute significantly to sedimentation on the shelf, because they are retained in the Galician Rías, which function as sediment traps.Sediments deposited on the shelf are frequently remobilized, particularly during southwesterly storms that coincide with downwelling conditions. Once in suspension the fine-grained sediments are transported northwards by the poleward flowing bottom currents and are eventually deposited on the Douro and Galicia Mud patches after a series of resuspension events. The locations of the two mud patches are strongly influenced by the shelf morphology.Fines already deposited on the mud patches are occasionally reintroduced into the system by large storm events. Some material from the Douro Mud patch and adjacent areas is re-deposited in the Galicia Mud patch. It is probable that sediments re-suspended from the Galicia Mud patch are carried off the shelf when storm events coincide with downwelling conditions.  相似文献   

12.
Sediment distribution patterns on the Galicia-Minho continental shelf   总被引:1,自引:0,他引:1  
A sedimentological and bathymetric study of the Minho-Galicia Shelf shows a strong contrast between a southern shelf region with a thin partially relict cover of sands and gravel, and a northern region where fine-grained sediments predominate. This contrast is explained through differences in the sediment supply, the oceanographic environment (storms and ocean currents) and the morphology of the shelf which results from its underlying tectonic framework.Most sediment is supplied to the Galicia-Minho Shelf by river discharges onto the Minho Shelf, particularly that from the Douro River. In the northern part of the shelf the Galician Rías act as sediment traps rather than sediment suppliers. The bulk of the sediment washes out of the rivers during episodic storm events. While most of the coarse sediments remain deposited close to the coast, the fine-grained material is exported to the outer areas of the shelf. Subsequently, coarse sediments close to the coast are transported southwards by the littoral drift. Whereas the fine-grained material is frequently resuspended through the action of the large swells who influence reaches deep into the water. This frequent resuspension has a long-term sorting effect on the sediments. Furthermore, resuspended sediments on the middle and outer regions of the shelf are transported northwards by a poleward flowing bottom current.As a consequence of the differential transport of coarse sediments to the south, and of the fine-grained sediments to the north, the outer reaches of the Minho Shelf are relatively poor in recent sediments. In many areas relict sediments as well as features associated with ancient coastlines and river mouths, still appear as seabed features. In contrast, the northern regions of the shelf are covered by a thin veneer of fine-grained material that smooth other most of these fossil features.The fine-grained sediment fractions (mostly very fine sands to coarse silts) are deposited in two large mud patches, the Douro and the Galicia Mud Patches, which are situated at water depths of around 100–120 m. These two mud patches are both controlled by the local hydrodynamics and morphology. The Beiral de Viana, to the west of the Douro Mud Patch is a plateau, up to 20 m high lying parallel to the shelf-break and is a morphological expression of an underlying horst system. This plateau acts as a barrier that prevents the drift of some of the fine-grained material to the west, out over the shelf-break and the continental slope. The Galicia Mud Patch is situated on the eastern part of the Galician Shelf to the north of the Douro Mud Patch. It is situated near the extension of the Porto–Tomar fault, which results in the shelf being usually steep in this region, down to a depth of about 100 m. West of this area the slope is much more gentle. Northward transport of the sediment is strongly reduced by the E–W trending outcrops of plutonic and metamorphic rocks.  相似文献   

13.
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transition may have enhanced sediment supply by increasing erosion rate and have an indispensable influence on the development of the incised valleys and 5 sets of deltaic systems since ~1.6 Ma.  相似文献   

14.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

15.
北冰洋楚科奇海陆架到陆坡表层沉积物有机碳载荷的变化   总被引:2,自引:0,他引:2  
沉积物单位表面积上吸附的有机碳被广泛用于示踪有机碳载荷的变化。本文研究了北冰洋典型边缘海——楚科奇海表层沉积物的有机碳载荷。研究发现陆架区沉积物的有机碳载荷高于陆坡区。相比于已报道的东西伯利亚海和马更些河,楚科奇海陆坡区沉积物的有机碳载荷也较低。这种有机碳载荷的变化可能和陆坡区的初级生产力较低,以及沉积物在传输过程中经历的氧化降解有关。沉积物的有机碳含量和比表面积呈线性相关,在有机碳轴上有正截距,表明一部分有机碳来自于岩石的贡献。此外,陆架区低有机碳载荷的沉积物含有的岩石有机碳更高。本研究的数据有助于深刻理解楚科奇海区域的碳循环问题。  相似文献   

16.
The Middle–Late Miocene Utsira Formation of the North Sea Basin contains a fully preserved, regional marine sand deposit that records a stable paleogeographic setting of sand transport and accumulation within a deep, epeiric seaway which persisted for >8 Ma. The sediment dispersal system was defined by (1) input through a marginal prograding strandplain platform, coast-to-basin bypass, transport along a narrow strait, and accumulation in strait-mouth shoal complexes within a shelf sea; (2) a high-energy marine regime; (3) very low time-averaged rates of sediment supply and accumulation; and (4) consequent high sediment reworking ratio. Sand distribution and stratal architectures reflect regional along-strike sediment transport and local to sub-regional landward sediment transport. Plume-shaped, south-building, submarine sand shoals that formed along the recurved arc of the strandplain margin nourished the shoal system. Very low-angle sigmoid clinoforms and down-stepping, aggradational top sets are distinctive architectures of these strike-fed sand bodies. The combination of strong marine currents and slow but long-lived sand supply from the Shetland strandplain created regional, sandy shelf shoal depositional systems that individually covered 3,500 to 6,000 km2 of the basin floor. Defining attributes of the shelf shoal systems include their location within the basin axis, abundance of autochthonous sediment, and sandy marine facies composition. Diagnostic depositional architectures include the along-strike-dipping sigmoidal clinoforms, poly-directional low-angle accretionary bedding at both regional and local scales, and mounded depositional topography. Erosional features include regional hummocky, low-relief shelf deflation surfaces, broad, elongate scours and sub-circular scour pits.  相似文献   

17.
A sedimentary succession studied along three parallel seismic lines details a platform-edge progradation of 21–36 km in a northwesterly direction across the northwestern Barents Shelf. The intra-shelf clinoform succession is bounded at bottom and top by Base Olenekian and Early Ladinian seismic reflectors. The ca 800 m thick succession can be resolved into seven distinct clinothems. The system is characterized by an early sub-horizontal platform-edge trajectory with extensive progradation, limited relative sea level rise and restricted accommodation. Thereafter the system outlines a largely ascending trajectory, marking a major rise in relative sea level and creation of significant accommodation. The platform-edge appears to back-step along one line suggesting that relative sea level rise out-paced sediment influx and preserved a clinothem with a trajectory characterized by accretionary transgression. Thereafter the trajectory is overall ascending regressive, with some variation of the trajectory angle, culminating in a flat and finally descending trajectory with oblique clinoforms outlining extensive progradation and another period of limited accommodation. The clinoforms downlap onto a succession of basin-floor deposits which appear to comprise at least two separate periods of deposition, forming two separate units. The first five clinothems downlap onto the first basin-floor unit. The shift to downlap onto the second unit occurs around the second period of extensive platform-edge advance, suggesting limited accommodation promoted bypass of significant amounts of sediment to the basin floor.The Gardarbanken High has been considered an obstacle to Early Triassic sediment progradation in this part of the basin. This inference can be corroborated based on the seismic attributes, which show sediment infill and onlap near the High. The influence is also noticeable in the reduced slope relief near the High, indicating that the basin floor was topographically higher. However, other geometric attributes cannot provide any definitive measures of structural influence.The thickness of preserved topsets and the distance from the platform-edge to the toe pinch-out point of each clinothem is found to be inversely proportional. This relationship is most marked in the fully developed sigmoidal clinoforms, whereas the link appears weaker in the oblique clinoforms. A near-perfect correlation between clinothem average vertical thickness (the average sedimentary rock accumulation within the clinothem) and advance of the toe is found, with only a relatively close relationship between clinothem average vertical thickness and advance of the platform-edge. In the studied system it therefore appears the advance of the toe is governed solely by sediment influx while the advance of the platform-edge is also influenced by relative sea level.  相似文献   

18.
The inner front of the southeastern Bering Sea shows marked spatial variability in frontal characteristics created by regional differences in forcing mechanisms. Differences in forcing mechanisms (sea ice advance/retreat and storm strength and timing) and early spring water properties result in strong interannual variability in biological, chemical, and physical features near the front. We have developed a simple model based on surface heat flux and water-column mixing to explain the existence of cold belts (Cont. Shelf Res. 19(14) (1999) 1833) associated with such fronts. Hydrography, fluorescence and nutrient observations show that pumping of nutrients into the euphotic zone occurs, and this can prolong primary production at the inner front. The effectiveness of this process depends on two factors: the existence of a reservoir of nutrients in the lower layer on the middle shelf and the occurrence of sufficient wind and tidal energy to mix the water column.  相似文献   

19.
The Pliocene to Recent of the Sinú Accretionary Prism, offshore Colombia, features gravity current dominated basins characterised primarily by channel- and sheet-like architectures and those with dominantly hemipelagic fills. The prism is fed by rivers that drain from uplifted older basins and volcanic Andean terranes to the south and east which source large volumes of sediment to the Colombian Shelf into the Colombian Basin. Some basin fills show evidence of both localised fold-induced sediment failure and regional-scale shelf collapse, both related to the generation and destruction of oversteepened slopes. Large scale collapses can create new sediment routing pathways and/or local depocentres into which sediment subsequently accumulates. In the Colombian Basin, even relatively distal basins show evidence of channel activity related primarily to the creation of new sediment distribution pathways through breaches in the substrate barriers between basins. These channels are often orientated parallel to the regional drainage trend, suggesting that regional sediment transport trends can assert themselves relatively early in a basin filling history regardless of the local bathymetric grain. While, at a regional scale, sediment dispersal fairways reflect drainage from the continental shelf to the basin floor, intraslope basins form local bathymetric obstructions that can drive local spatial variations in sediment distribution. Thus, both local and regional length scales of bathymetric control are evident within the intraslope basins of the Sinú Accretionary Prism. Although regional dispersal patterns generally become more important in time, individual intraslope basins exhibit more complex filling histories because events such as sill or shelf collapse may serve to disrupt established distribution pathways, initiating repeated episodes of adjustment.  相似文献   

20.
Distribution of210Pb in sediments on the South Texas Continental Shelf is related to dynamics of the sedimentary transport processes. This radioisotope, whose concentration is time-dependent, defines three depocenters on the shelf. In addition, the variation of210Pb activity at the sediment/water interface delineates areas of terrigenous sedimentation from hemipelagic sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号