首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave equation–based migration velocity analysis techniques aim to construct a kinematically accurate velocity model for imaging or as an initial model for full waveform inversion applications. The most popular wave equation–based migration velocity analysis method is differential semblance optimization, where the velocity model is iteratively updated by minimizing the unfocused energy in an extended image volume. However, differential semblance optimization suffers from artefacts, courtesy of the adjoint operator used in imaging, leading to poor convergence. Recent findings show that true amplitude imaging plays a significant role in enhancing the differential semblance optimization's gradient and reducing the artefacts. Here, we focus on a pseudo-inverse operator to the horizontally extended Born as a true amplitude imaging operator. For laterally inhomogeneous models, the operator required a derivative with respect to a vertical shift. Extending the image vertically to evaluate such a derivative is costly and impractical. The inverse operator can be simplified in laterally homogeneous models. We derive an extension of the approach to apply the full inverse formula and evaluate the derivative efficiently. We simplified the implementation by applying the derivative to the imaging condition and utilize the relationship between the source and receiver wavefields and the vertical shift. Specifically, we verify the effectiveness of the approach using the Marmousi model and show that the term required for the lateral inhomogeneity treatment has a relatively small impact on the results for many cases. We then apply the operator in differential semblance optimization and invert for an accurate macro-velocity model, which can serve as an initial velocity model for full waveform inversion.  相似文献   

2.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

3.
Imaging the change in physical parameters in the subsurface requires an estimate of the long wavelength components of the same parameters in order to reconstruct the kinematics of the waves propagating in the subsurface. One can reconstruct the model by matching the recorded data with modeled waveforms extrapolated in a trial model of the medium. Alternatively, assuming a trial model, one can obtain a set of images of the reflectors from a number of seismic experiments and match the locations of the imaged interfaces. Apparent displacements between migrated images contain information about the velocity model and can be used for velocity analysis. A number of methods are available to characterize the displacement between images; in this paper, we compare shot‐domain differential semblance (image difference), penalized local correlations, and image‐warping. We show that the image‐warping vector field is a more reliable tool for estimating displacements between migrated images and leads to a more robust velocity analysis procedure. By using image‐warping, we can redefine the differential semblance optimization problem with an objective function that is more robust against cycle‐skipping than the direct image difference. We propose an approach that has straightforward implementation and reduced computational cost compared with the conventional adjoint‐state method calculations. We also discuss the weakness of migration velocity analysis in the migrated‐shot domain in the case of highly refractive media, when the Born modelling operator is far from being unitary and thus its adjoint (migration) operator poorly approximates the inverse.  相似文献   

4.
扩展成像条件下的最小二乘逆时偏移   总被引:2,自引:1,他引:1       下载免费PDF全文
刘玉金  李振春 《地球物理学报》2015,58(10):3771-3782
逆时偏移(RTM)是复杂介质条件下地震成像的重要手段.因受观测系统限制、上覆地层影响以及波场带宽有限等因素的影响,现行的常规RTM所采用的互相关成像条件通常对地下构造进行模糊成像.最小二乘逆时偏移(LSRTM)通过最小化线性Born近似正演数据和采集数据之间的波形差异,采用梯度类反演算法优化反射系数模型,获得的成像结果具有更高的分辨率和更可靠的振幅保真度.然而,基于波形拟合的LSRTM对背景速度模型的依赖性很强.误差太大的速度模型容易产生周波跳跃现象,导致LSRTM难以获得全局最优解.为了克服这一问题,本文基于扩展模型的思想,在线性Born近似下,推导得到RTM扩展成像条件.并基于最小二乘反演理论,提出扩展成像条件下的LSRTM方法.理论模型试算表明,本文方法不仅可以提供分辨率更高、振幅属性更为可靠的成像结果,而且能够在一定程度上消除速度误差对反演成像的影响.  相似文献   

5.
6.
7.
是否能够正确地建立深度域三维速度模型是三维叠前深度偏移成败的关键 .本文根据Deregowski循环 ,利用叠前深度域地震成像对速度模型变化的敏感性 ,采用偏移迭代逐次逼近最佳成像速度 ,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术 .借鉴时间域CDP(共深度点 )道集上常规叠加速度分析的策略 ,在深度域CRP(共反射点 )道集上 ,提出剩余慢度平方谱的概念并建立相应的实现技术 .导出深度域中均方根速度与层速度之间的关系 ;按照串级偏移原理确定偏移循环过程中初始速度、剩余速度及修改后速度之间的关系 ;采用蒙特卡洛非线性优化算法实现从剩余慢度平方谱中自动拾取层速度 ,讨论了其地质速度约束条件和蒙特卡洛非线性优化的收敛准则 ,使得所拾取的层速度模型具有合理的地质意义并获得最佳偏移成像效果 .SEG EAGE理论模型数值试算验证了方法的有效性 ,在海拉尔盆地霍多莫尔工区 ,5 8km2 三维资料的速度模型建立并获得满意的三维叠前深度偏移成像 .  相似文献   

8.
Wave-equation migration velocity analysis. I. Theory   总被引:2,自引:0,他引:2  
We present a migration velocity analysis (MVA) method based on wavefield extrapolation. Similarly to conventional MVA, our method aims at iteratively improving the quality of the migrated image, as measured by the flatness of angle‐domain common‐image gathers (ADCIGs) over the aperture‐angle axis. However, instead of inverting the depth errors measured in ADCIGs using ray‐based tomography, we invert ‘image perturbations’ using a linearized wave‐equation operator. This operator relates perturbations of the migrated image to perturbations of the migration velocity. We use prestack Stolt residual migration to define the image perturbations that maximize the focusing and flatness of ADCIGs. Our linearized operator relates slowness perturbations to image perturbations, based on a truncation of the Born scattering series to the first‐order term. To avoid divergence of the inversion procedure when the velocity perturbations are too large for Born linearization of the wave equation, we do not invert directly the image perturbations obtained by residual migration, but a linearized version of the image perturbations. The linearized image perturbations are computed by a linearized prestack residual migration operator applied to the background image. We use numerical examples to illustrate how the backprojection of the linearized image perturbations, i.e. the gradient of our objective function, is well behaved, even in cases when backprojection of the original image perturbations would mislead the inversion and take it in the wrong direction. We demonstrate with simple synthetic examples that our method converges even when the initial velocity model is far from correct. In a companion paper, we illustrate the full potential of our method for estimating velocity anomalies under complex salt bodies.  相似文献   

9.
10.
Migration velocity analysis aims at determining the background velocity model. Classical artefacts, such as migration smiles, are observed on subsurface offset common image gathers, due to spatial and frequency data limitations. We analyse their impact on the differential semblance functional and on its gradient with respect to the model. In particular, the differential semblance functional is not necessarily minimum at the expected value. Tapers are classically applied on common image gathers to partly reduce these artefacts. Here, we first observe that the migrated image can be defined as the first gradient of an objective function formulated in the data‐domain. For an automatic and more robust formulation, we introduce a weight in the original data‐domain objective function. The weight is determined such that the Hessian resembles a Dirac function. In that way, we extend quantitative migration to the subsurface‐offset domain. This is an automatic way to compensate for illumination. We analyse the modified scheme on a very simple 2D case and on a more complex velocity model to show how migration velocity analysis becomes more robust.  相似文献   

11.
Waveform inversion is a velocity‐model‐building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image‐domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the information carrier. The objective function for the image‐domain approach is designed to optimize the coherency of reflections in extended common‐image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies arising from the velocity model error. Minimizing the objective function optimizes the model and improves the image quality. The gradient of the objective function is computed using the adjoint state method in a way similar to that in the analogous data‐domain implementation. We propose an image‐domain velocity‐model building method using extended common‐image‐point space‐ and time‐lag gathers constructed sparsely at reflections in the image. The gathers are effective in reconstructing the velocity model in complex geologic environments and can be used as an economical replacement for conventional common‐image gathers in wave‐equation tomography. A test on the Marmousi model illustrates successful updating of the velocity model using common‐image‐point gathers and resulting improved image quality.  相似文献   

12.
Wavefield‐based migration velocity analysis using the semblance principle requires computation of images in an extended space in which we can evaluate the imaging consistency as a function of overlapping experiments. Usual industry practice is to assemble those seismic images in common‐image gathers that represent reflectivity as a function of depth and extensions, e.g., reflection angles. We introduce extended common‐image point (CIP) gathers constructed only as a function of the space‐ and time‐lag extensions at sparse and irregularly distributed points in the image. Semblance analysis using CIP's constructed by this procedure is advantageous because we do not need to compute gathers at regular surface locations and we do not need to compute extensions at all depth levels. The CIP's also give us the flexibility to distribute them in the image at irregular locations aligned with the geologic structure. Furthermore, the CIP's remove the depth bias of common‐image gathers constructed as a function of the depth axis. An interpretation of the CIP's using the scattering theory shows that they are scattered wavefields associated with sources and receivers inside the subsurface. Thus, when the surface wavefields are correctly reconstructed, the extended CIP's are characterized by focused energy at the origin of the space‐ and time‐lag axes. Otherwise, the energy defocuses from the origin of the lag axes proportionally with the cumulative velocity error in the overburden. This information can be used for wavefield‐based tomographic updates of the velocity model, and if the velocity used for imaging is correct, the coordinate‐independent CIP's can be a decomposed as a function of the angles of incidence.  相似文献   

13.
Seismograms predicted from acoustic or elastic earth models depend very non-linearly on the long wavelength components of velocity. This sensitive dependence demands the use of special variational principles in waveform-based inversion algorithms. The differential semblance variational principle is well-suited to velocity inversion by gradient methods, since its objective function is smooth and convex over a large range of velocity models. An extension of the adjoint state technique yields an accurate estimate of the differential semblance gradient. Non-linear conjugate gradient iteration is quite successful in locating the global differential semblance minimum, which is near the ordinary least-squares global minimum when coherent data noise is small. Several examples, based on the 2D primaries-only acoustic model, illustrate features of the method and its performance.  相似文献   

14.
We present an innovative approach for seismic image enhancement using multi‐parameter angle‐domain characterization of common image gathers. A special subsurface angle‐domain imaging system is used to generate the multi‐parameter common image gathers in a summation‐free image space. The imaged data associated with each common image gathers depth point contain direction‐dependent opening‐angle image contributions from all the available incident and scattered wave‐pairs at this point. Each direction‐dependent opening‐angle data can be differently weighted according to its coherency measure. Once the optimal migration velocity is used, it is assumed that in the actual specular direction, the coherency measure (semblance) along reflection events, from all available opening angles and opening azimuths, is larger than that along non‐specular directions. The computed direction‐dependent semblance attribute is designed to operate as an imaging filter which enhances specular migration contributions and suppresses all others in the final migration image. The ability to analyse the structural properties of the image points by the multi‐parameter common image gather allows us to better handle cases of complicated wave propagation and to improve the image quality at poorly illuminated regions or near complex structures. The proposed method and some of its practical benefits are demonstrated through detailed analysis of synthetic and real data examples.  相似文献   

15.
The estimation of a velocity model from seismic data is a crucial step for obtaining a high‐quality image of the subsurface. Velocity estimation is usually formulated as an optimization problem where an objective function measures the mismatch between synthetic and recorded wavefields and its gradient is used to update the model. The objective function can be defined in the data‐space (as in full‐waveform inversion) or in the image space (as in migration velocity analysis). In general, the latter leads to smooth objective functions, which are monomodal in a wider basin about the global minimum compared to the objective functions defined in the data‐space. Nonetheless, migration velocity analysis requires construction of common‐image gathers at fixed spatial locations and subsampling of the image in order to assess the consistency between the trial velocity model and the observed data. We present an objective function that extracts the velocity error information directly in the image domain without analysing the information in common‐image gathers. In order to include the full complexity of the wavefield in the velocity estimation algorithm, we consider a two‐way (as opposed to one‐way) wave operator, we do not linearize the imaging operator with respect to the model parameters (as in linearized wave‐equation migration velocity analysis) and compute the gradient of the objective function using the adjoint‐state method. We illustrate our methodology with a few synthetic examples and test it on a real 2D marine streamer data set.  相似文献   

16.
地下复杂介质地震处理中的CFP技术   总被引:1,自引:3,他引:1  
要简要介绍CFP(Common Focus Point)方法技术的基本原理和主要应用。CFP是复杂介质地震处理中的一项新技术,它把叠前偏移分成两个独立的步骤:首先对检波点(炮点)进行聚焦处理,产生共聚焦点道集(CFP道集),然后再对炮点(检波点)进行聚焦,产生叠前偏移的输出。两个步骤中间的CFP道集则可以进行其它处理。如果是为了寻找构造信息,那么可以应用共焦点CFP偏移;如果是为了寻找岩石、孔隙或流体的信息,则要应用双焦点CFP偏移。目前,该技术主要应用于:(1)CFP两步聚焦法偏移;(2)叠前深度偏移速度模型的建立;(3)试图通过算于而不是速度来解决复杂地表的静校正;(4)消除全程或层间多次波;(5)CFP方法基准面的延拓和盐下成像;(6)多分量地震资料的偏移成像。  相似文献   

17.
Wave‐equation migration velocity analysis is a technique designed to extract and update velocity information from migrated images. The velocity model is updated through the process of optimizing the coherence of images migrated with the known background velocity model. The capacity for handling multi‐pathing of the technique makes it appropriate in complex subsurface regions characterized by strong velocity variation. Wave‐equation migration velocity analysis operates by establishing a linear relation between a slowness perturbation and a corresponding image perturbation. The linear relationship and the corresponding linearized operator are derived from conventional extrapolation operators and the linearized operator inherits the main properties of frequency‐domain wavefield extrapolation. A key step in the implementation is to design an appropriate procedure for constructing an image perturbation relative to a reference image that represents the difference between the current image and a true, or more correct image of the subsurface geology. The target of the inversion is to minimize such an image perturbation by optimizing the velocity model. Using time‐shift common‐image gathers, one can characterize the imperfections of migrated images by defining the focusing error as the shift of the focus of reflections along the time‐shift axis. The focusing error is then transformed into an image perturbation by focusing analysis under the linear approximation. As the focusing error is caused by the incorrect velocity model, the resulting image perturbation can be considered as a mapping of the velocity model error in the image space. Such an approach for constructing the image perturbation is computationally efficient and simple to implement. The technique also provides a new alternative for using focusing information in wavefield‐based velocity model building. Synthetic examples demonstrate the successful application of our method to a layered model and a subsalt velocity update problem.  相似文献   

18.
Reverse‐time migration has become an industry standard for imaging in complex geological areas. We present an approach for increasing its imaging resolution by employing time‐shift gathers. The method consists of two steps: (i) migrating seismic data with the extended imaging condition to get time‐shift gathers and (ii) accumulating the information from time‐shift gathers after they are transformed to zero‐lag time‐shift by a post‐stack depth migration on a finer grid. The final image is generated on a grid, which is denser than that of the original image, thus improving the resolution of the migrated images. Our method is based on the observation that non‐zero‐lag time‐shift images recorded on the regular computing grid contain the information of zero‐lag time‐shift image on a denser grid, and such information can be continued to zero‐lag time‐shift and refocused at the correct locations on the denser grid. The extra computational cost of the proposed method amounts to the computational cost of zero‐offset migration and is almost negligible compared with the cost of pre‐stack shot‐record reverse‐time migration. Numerical tests on synthetic models demonstrate that the method can effectively improve reverse‐time migration resolution. It can also be regarded as an approach to improve the efficiency of reverse‐time migration by performing wavefield extrapolation on a coarse grid and by generating the final image on the desired fine grid.  相似文献   

19.
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub‐surface petro‐elastic properties. Seismic amplitude‐versus‐angle inversion methodologies allow to retrieve P‐wave and S‐wave velocities and density individually allowing a better characterisation of existing litho‐fluid facies. We present an iterative geostatistical seismic amplitude‐versus‐angle inversion algorithm that inverts pre‐stack seismic data, sorted by angle gather, directly for: density; P‐wave; and S‐wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co‐simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P‐wave velocity, S‐wave velocity and density estimated from the available well‐log data, and the corresponding joint distributions between density versus P‐wave velocity and P‐wave versus S‐wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre‐stack synthetic dataset, built from a real reservoir, and on a real pre‐stack seismic dataset acquired over a deep‐water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high‐resolution elastic sub‐surface Earth models.  相似文献   

20.
State‐of‐the‐art 3D seismic acquisition geometries have poor sampling along at least one dimension. This results in coherent migration noise that always contaminates pre‐stack migrated data, including high‐fold surveys, if prior‐to‐migration interpolation was not applied. We present a method for effective noise suppression in migrated gathers, competing with data interpolation before pre‐stack migration. The proposed technique is based on a dip decomposition of common‐offset volumes and a semblance‐type measure computation via offset for all constant‐dip gathers. Thus the processing engages six dimensions: offset, inline, crossline, depth, inline dip, and crossline dip. To reduce computational costs, we apply a two‐pass (4D in each pass) noise suppression: inline processing and then crossline processing (or vice versa). Synthetic and real‐data examples verify that the technique preserves signal amplitudes, including amplitude‐versus‐offset dependence, and that faults are not smeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号