首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saturation of porous rocks with a mixture of two fluids has a substantial effect on seismic‐wave propagation. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves due to the mechanism of wave‐induced fluid‐flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a regular way. However, recent experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Based on an approximation for the coherent wavefield in random porous media, we develop a model which assumes a continuous distribution of fluid heterogeneities. As this continuous random media approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental data. We also show how to relate the random functions to experimentally measurable parameters.  相似文献   

2.
邓继新  王尚旭  杜伟 《地球物理学报》2012,55(08):2716-2727
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

3.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

4.
Wave‐induced fluid flow at microscopic and mesoscopic scales arguably constitutes the major cause of intrinsic seismic attenuation throughout the exploration seismic and sonic frequency ranges. The quantitative analysis of these phenomena is, however, complicated by the fact that the governing physical processes may be dependent. The reason for this is that the presence of microscopic heterogeneities, such as micro‐cracks or broken grain contacts, causes the stiffness of the so‐called modified dry frame to be complex‐valued and frequency‐dependent, which in turn may affect the viscoelastic behaviour in response to fluid flow at mesoscopic scales. In this work, we propose a simple but effective procedure to estimate the seismic attenuation and velocity dispersion behaviour associated with wave‐induced fluid flow due to both microscopic and mesoscopic heterogeneities and discuss the results obtained for a range of pertinent scenarios.  相似文献   

5.
Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has a substantial effect on the seismic waves propagating through these rocks. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves, due to wave-induced fluid flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. As partial fluid saturation can occur on different length scales, attenuation due to wave-induced fluid flow is ubiquitous. In particular, mesoscopic fluid flow due to heterogeneities occurring on a scale greater than porescale, but less than wavelength scale, is responsible for significant attenuation in the frequency range from 10 to 1000 Hz.Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a periodic/regular way. In 1D this corresponds to periodically alternating layering, in 3D as periodically distributed inclusions of a given shape (usually spheres). All these models yield very similar estimates of attenuation and dispersion.Experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Therefore, theoretical models are required which would simulate the effect of more general and realistic fluid distributions.We have developed two theoretical models which simulate the effect of random distributions of mesoscopic fluid heterogeneities. The first model assumes that one fluid forms a random ensemble of spherical inclusions in a porous medium saturated by the other fluid. The attenuation and dispersion predicted by this model are very similar to those predicted for 3D periodic distribution. Attenuation (inverse quality factor) is proportional to ω at low frequencies for both distributions. This is in contrast to the 1D case, where random and periodically alternating layering shows different attenuation behaviour at low frequencies. The second model, which assumes a 3D continuous distribution of fluid heterogeneities, also predicts the same low-frequency asymptote of attenuation. However, the shapes of the frequency dependencies of attenuation are different. As the 3D continuous random approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental results. Further research is required in order to uncover how to relate the random functions to experimentally significant parameters.  相似文献   

6.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

7.
We measured the extensional‐mode attenuation and Young's modulus in a porous sample made of sintered borosilicate glass at microseismic to seismic frequencies (0.05–50 Hz) using the forced oscillation method. Partial saturation was achieved by water imbibition, varying the water saturation from an initial dry state up to ~99%, and by gas exsolution from an initially fully water‐saturated state down to ~99%. During forced oscillations of the sample effective stresses up to 10 MPa were applied. We observe frequency‐dependent attenuation, with a peak at 1–5 Hz, for ~99% water saturation achieved both by imbibition and by gas exsolution. The magnitude of this attenuation peak is consistently reduced with increasing fluid pressure and is largely insensitive to changes in effective stress. Similar observations have recently been attributed to wave‐induced gas exsolution–dissolution. At full water saturation, the left‐hand side of an attenuation curve, with a peak beyond the highest measured frequency, is observed at 3 MPa effective stress, while at 10 MPa effective stress the measured attenuation is negligible. This observation is consistent with wave‐induced fluid flow associated with mesoscopic compressibility contrasts in the sample's frame. These variations in compressibility could be due to fractures and/or compaction bands that formed between separate sets of forced‐oscillation experiments in response to the applied stresses. The agreement of the measured frequency‐dependent attenuation and Young's modulus with the Kramers–Kronig relations and additional data analyses indicate the good quality of the measurements. Our observations point to the complex interplay between structural and fluid heterogeneities on the measured seismic attenuation and they illustrate how these heterogeneities can facilitate the dominance of one attenuation mechanism over another.  相似文献   

8.
Local fluid flow (LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band. LFF is easily influenced by the structure and boundary conditions of the porous media, which leads to different behaviors of the peak frequency of attenuation. The associated transition frequency can provide detailed information about the trend of LFF; therefore, research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation (i.e., inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media. In this study, we firstly obtain the transition frequency of fluid flux based on Biot’s theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell (RUC). We then analyze changes of these two frequencies in porous media with different porous properties. Finally, we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs. This setup can facilitate the understanding of the effect from the undrained boundary condition. Results demonstrate that these two frequencies have the same trend at low water saturation, but amplitude variations differ between the frequencies as the amount of saturation increases. However, for cases of high water saturation, both the trend and the amplitude variation of these two frequencies fit well with each other.  相似文献   

9.
周期性层状含孔隙、裂隙介质模型纵波衰减特征   总被引:2,自引:2,他引:0       下载免费PDF全文
地震波在含孔隙、裂隙斑块饱和介质传播过程中会诱发多个尺度孔隙流体流动而产生衰减和速度频散.在含有宏观尺度“Biot流”和介观尺度“局域流”衰减诱导机制的周期性层状孔隙介质模型基础上,引入了微观尺度硬币型和尖灭型裂隙“喷射流”的影响,构建了周期性层状含孔隙、裂隙介质模型.利用双解耦弹性波动方程的方法数值计算了该模型地震频带的纵波衰减和速度频散并与周期性层状孔隙介质模型做了对比研究.分析了该模型在不同裂隙参数(裂隙密度、裂隙纵横比)及裂隙体积含量下的纵波衰减和频散特征,裂隙密度越高对于纵波衰减和频散的影响越大,裂隙纵横比越小,由裂隙引起的纵波衰减部分向高频段移动,裂隙体积含量越少,纵波衰减先降低后小幅增加再降低,频散速度增加,并逐渐接近于周期性层状孔隙介质模型的纵波衰减和频散速度曲线.最后研究了周期性层状含孔隙、裂隙介质模型有效平面波模量的高低频极限以及流固相对位移在该模型中的分布特征.  相似文献   

10.
含混合裂隙、孔隙介质的纵波衰减规律研究   总被引:4,自引:4,他引:0       下载免费PDF全文
地下多孔介质中的孔隙类型复杂多样,既有硬孔又有扁平的软孔.针对复杂孔隙介质,假设多孔介质中同时含有球型硬孔和两种不同产状的裂隙(硬币型、尖灭型裂隙),当孔隙介质承载载荷时,考虑两种不同类型的裂隙对于孔隙流体压力的影响,建立起Biot理论框架下饱和流体情况含混合裂隙、孔隙介质的弹性波动方程,并进一步求取了饱和流体情况下仅由裂隙引起流体流动时的含混合裂隙、孔隙介质的体积模量和剪切模量,随后,在此基础上讨论了含混合裂隙、孔隙介质在封闭条件下地震波衰减和频散的高低频极限表达式.最后计算了给定模型的地震波衰减和频散,发现地震波衰减曲线呈现"多峰"现象,速度曲线为"多频段"频散.针对该模型分析讨论了渗透率参数、裂隙纵横比参数以及流体黏滞性参数对于地震波衰减和频散的影响,表明三个参数均为频率控制参数.  相似文献   

11.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

12.

含流体孔隙介质中地震波的速度频散和衰减在指导复杂储层含油气性识别领域具有重要意义.本文构建了包含微观挤喷流与介观层间流影响的跨尺度模型, 并使用求解介质等效模量的方式得到了模型中地震波的频散速度与衰减因子, 克服了前人在高频段计算结果出现异常值以及不同尺度衰减峰无法分离的缺陷.在该双尺度模型的基础上, 本文又综合考虑宏观尺度Biot流, 将三种地震波衰减理论耦合, 建立了相对统一的三尺度地震波衰减岩石物理模型.在Biot理论框架下, 分析了非均匀性流体、孔裂隙结构、微观挤喷流以及介观层间流对流体压力与弹性模量的影响, 得到了该三尺度模型中地震波的波动方程, 并求解得到了相应的地震波衰减与频散曲线, 分析了不同介质参数对衰减与频散曲线的影响.我们推导了在该模型上覆均匀各向同性介质情况下, 分界面处各类极性波的反射、透射系数特征方程, 并得到了随频率以及入射角变化的反射、透射系数三维曲面.

  相似文献   

13.

复杂介质油气藏的地震波频散和衰减是地球物理勘探中油气特征反演与解释的重要属性.介观尺度处于微观孔隙尺度与宏观地震波场尺度之间,地震波穿过饱和流体岩石时激励流体发生频散和衰减,导致地震波能量损耗,被称为介观波致流.其形成机理、特征和规律一直是勘探地球物理学和岩石物理学等领域共同关心的科学问题,也是研究的前沿和难点之一.本文首先选取印第安纳灰岩(Indiana)作为研究对象,通过排水方式饱和样品,使用CT方法研究介观流体分布特征和规律;为研究其机理,引入Biot孔弹性理论构建三维(3D)数值模型,模拟部分饱和岩石的纵波速度频散和衰减特征.经对比,数值模拟结果与实验结果匹配,表明Biot孔弹性理论可以用来描述介观波致流的物理机理.本文发展的岩石物理实验结合数值模拟的研究手段为今后研究介观流衰减和频散的特征和规律提供了理论和方法借鉴.

  相似文献   

14.
含流体孔隙介质中面波的传播特性及应用   总被引:2,自引:2,他引:0       下载免费PDF全文
基于单相介质中地震波理论的高频面波法已广泛应用于求取浅地表S波的速度.然而水文地质条件表明, 普遍的浅地表地球介质富含孔隙.孔隙中充填的流体会显著地影响面波在浅地表的传播, 进而造成频散和衰减的变化.本文研究了地震勘探频段内针对含流体孔隙介质边界条件的面波的传播特性.孔隙流体在自由表面存在完全疏通、完全闭合以及部分疏通的情况.孔隙单一流体饱和时, 任何流体边界条件下存在R1模式波, 与弹性介质中的 Rayleigh 波类似, 相速度稍小于S波并在地震记录中显示强振幅.由于介质的内在衰减, R1在均匀半空间中也存在频散, 相速度和衰减在不同流体边界下存在差异.Biot 固流耦合系数(孔隙流体黏滞度与骨架渗透率之比)控制频散的特征频率, 高耦合系数会在地震勘探频带内明显消除这种差异.介质的迂曲度等其他物性参数对不同流体边界下的R1波的影响也有不同的敏感度.完全闭合和部分疏通流体边界下存在R2模式波, 相速度略低于慢P波.在多数条件下, 如慢P波在时频响应中难以观察到.但是在耦合系数较低时会显现, 一定条件下甚至会以非物理波形式接收R1波的辐射, 显示强振幅.浅表风化层低速带存在, 震源激发时的运动会显著影响面波的传播.对于接收点径向运动会造成面波的 Doppler 频移, 横向运动会造成面波的时频畸变.孔隙存在多相流体时, 中观尺度下不均匀斑块饱和能很好地解释体波在地震频带内的衰减.快P波受到斑块饱和显著影响, R1波与快P波有更明显关联, 与完全饱和模型中不同, 也更易于等效模型建立.频散特征频率受孔隙空间不同流体成分比例变化的控制, 为面波方法探测浅地表流体分布与迁移提供可能性.通常情况孔隙介质频散特征频率较高, 标准线性黏弹性固体可以在相对低频的地震勘探频带内等效表征孔隙介质中R1波的传播特征, 特别在时域, 可在面波成像反演建模中应用.  相似文献   

15.
In sedimentary rocks attenuation/dispersion is dominated by fluid-rock interactions. Wave-induced fluid flow in the pores causes energy loss through several mechanisms, and as a result attenuation is strongly frequency dependent. However, the fluid motion process governing the frequency dependent attenuation and velocity remains unclear. We propose a new approach to obtain the analytical expressions of pore pressure, relative fluxes distribution and frame displacement within the double-layer porous media based on quasi-static poroelastic theory. The dispersion equation for a P-wave propagating in a porous medium permeated by aligned fractures is given by considering fractures as thin and highly compliant layers. The influence of mesoscopic fluid flow on phase velocity dispersion and attenuation is discussed under the condition of varying fracture weakness. In this model conversion of the compression wave energy into Biot slow wave diffusion at the facture surface can result in apparent attenuation and dispersion within the usual seismic frequency band. The magnitude of velocity dispersion and attenuation of P-wave increases with increasing fracture weakness, and the relaxation peak and maximum attenuation shift towards lower frequency. Because of its periodic structure, the fractured porous media can be considered as a phononic crystal with several pass and stop bands in the high frequency band. Therefore, the velocity and attenuation of the P-wave show an oscillatory behavior with increasing frequency when resonance occurs. The evolutions of the pore pressure and the relative fluxes as a function of frequency are presented, giving more physical insight into the behavior of P-wave velocity dispersion and the attenuation of fractured porous medium due to the wave-induced mesoscopic flow. We show that the specific behavior of attenuation as function of frequency is mainly controlled by the energy dissipated per wave cycle in the background layer.  相似文献   

16.
吴建鲁  吴国忱 《地球物理学报》2017,60(10):3942-3953
地震波在地下含流体孔隙介质中传播时,会引起中观尺度的"局域流",进而产生地震波震电效应.基于Biot(1941)固结理论的准静态方程,在频率域中采用空间有限差分方法,正演模拟虚岩石物理岩样的地震波衰减和震电效应.与时间域虚岩石物理方法相比,该方法既可以直接求取任一频率下的地震波衰减和电势,便于应用于实际岩样的预测分析,也避免了讨论岩样外表面施加的力源函数表达式及时间剖分稳定性条件等问题.首先利用周期性层状介质模型验证了本文所描述方法的有效性,并进一步求取分析了周期性层状介质两种不同特征单元的渗流电流密度及电势,数值模拟结果表明由中观尺度"局域流"引起的震电效应电势振幅数量级在实验室测量范围之内,随后,分析研究了四种不同高渗介质占比值的地震衰减及震电效应特征.最后,将本文提出的震电效应数值计算方法推广至二维,并求取了二维斑块饱和模型的地震波衰减、速度频散、电势的振幅和相位角数值结果.  相似文献   

17.

地震波传播激发的不同尺度的流固相对运动(宏观、中观和微观)是许多沉积岩地层中地震波频散和衰减的主要原因,然而野外观测和试验测量都难以对非均匀多孔介质孔隙压力弛豫物理过程进行精细刻画.通过数字岩石物理技术,本文建立了三个典型的数字岩心分别用于表征孔隙结构、岩石骨架和斑状饱和流体引起的非均质性,利用动态应力应变模拟技术计算数字岩心的位移和孔隙流体增量图像.通过分析和比较三个数字岩心的位移和孔隙压力增量图像,细致刻画了发生于非均匀含流体多孔介质内的宏观、中观和微观尺度的流固相对运动:1)宏观尺度的波致孔隙流体流动导致波长尺度上数字岩心不同区域的孔隙压力和位移差异;2)中观尺度的流体流动发生在软层与硬层之间、气层与液层之间;3)微观尺度的流体流动发生在孔隙内部或相邻孔隙之间.数值模拟试验也证明基于数字岩心的动态应力应变模拟技术可以从微观尺度上更好的理解波致孔隙流体流动发生的物理机理,从而为建立岩石骨架、孔隙流体、孔隙结构非均质性和弹性波频散-衰减特征的映射关系奠定基础.

  相似文献   

18.
In fractured reservoirs, seismic wave velocity and amplitude depend on frequency and incidence angle. Frequency dependence is believed to be principally caused by the wave‐induced flow of pore fluid at the mesoscopic scale. In recent years, two particular phenomena, i.e., patchy saturation and flow between fractures and pores, have been identified as significant mechanisms of wave‐induced flow. However, these two phenomena are studied separately. Recently, a unified model has been proposed for a porous rock with a set of aligned fractures, with pores and fractures filled with two different fluids. Existing models treat waves propagating perpendicular to the fractures. In this paper, we extend the model to all propagation angles by assuming that the flow direction is perpendicular to the layering plane and is independent of the loading direction. We first consider the limiting cases through poroelastic Backus averaging, and then we obtain the five complex and frequency‐dependent stiffness values of the equivalent transversely isotropic medium as a function of the frequency. The numerical results show that, when the bulk modulus of the fracture‐filling fluid is relatively large, the dispersion and attenuation of P‐waves are mainly caused by fractures, and the values decrease as angles increase, almost vanishing when the incidence angle is 90° (propagation parallel to the fracture plane). While the bulk modulus of fluid in fractures is much smaller than that of matrix pores, the attenuation due to the “partial saturation” mechanism makes the fluid flow from pores into fractures, which is almost independent of the incidence angle.  相似文献   

19.
The presence of fractures in fluid‐saturated porous rocks is usually associated with strong seismic P‐wave attenuation and velocity dispersion. This energy dissipation can be caused by oscillatory wave‐induced fluid pressure diffusion between the fractures and the host rock, an intrinsic attenuation mechanism generally referred to as wave‐induced fluid flow. Geological observations suggest that fracture surfaces are highly irregular at the millimetre and sub‐millimetre scale, which finds its expression in geometrical and mechanical complexities of the contact area between the fracture faces. It is well known that contact areas strongly affect the overall mechanical fracture properties. However, existing models for seismic attenuation and velocity dispersion in fractured rocks neglect this complexity. In this work, we explore the effects of fracture contact areas on seismic P‐wave attenuation and velocity dispersion using oscillatory relaxation simulations based on quasi‐static poroelastic equations. We verify that the geometrical and mechanical details of fracture contact areas have a strong impact on seismic signatures. In addition, our numerical approach allows us to quantify the vertical solid displacement jump across fractures, the key quantity in the linear slip theory. We find that the displacement jump is strongly affected by the geometrical details of the fracture contact area and, due to the oscillatory fluid pressure diffusion process, is complex‐valued and frequency‐dependent. By using laboratory measurements of stress‐induced changes in the fracture contact area, we relate seismic attenuation and dispersion to the effective stress. The corresponding results do indeed indicate that seismic attenuation and phase velocity may constitute useful attributes to constrain the effective stress. Alternatively, knowledge of the effective stress may help to identify the regions in which wave induced fluid flow is expected to be the dominant attenuation mechanism.  相似文献   

20.
基于Biot理论,考虑液相的黏弹性变形和固液相接触面上的相对扭转,提出了含黏滞流体VTI孔隙介质模型.从理论上推导出,在该模型中除存在快P波、慢P波、SV波、SH波以外,还将存在两种新横波-慢SV波和慢SH波.数值模拟分析了6种弹性波的相速度、衰减、液固相振幅比随孔隙度、频率的变化规律以及快P波、快SV波的衰减随流体性质、渗透率、入射角的变化规律.结果表明慢SV波和慢SH波主要在液相中传播,高频高孔隙度时,速度较高;大角度入射时,快P波衰减表现出明显的各向异性,而快SV波的衰减则基本不变;储层纵向和横向渗透率存在差异时,快SV波衰减大的方向渗透率高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号