首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Transversely isotropic models with a tilted symmetry axis have become standard for imaging beneath dipping shale formations and in active tectonic areas. Here, we develop a methodology of wave-equation-based image-domain tomography for acoustic tilted transversely isotropic media. We obtain the gradients of the objective function using an integral wave-equation operator based on a separable dispersion relation that takes the symmetry-axis tilt into account. In contrast to the more conventional differential solutions, the integral operator produces only the P-wavefield without shear-wave artefacts, which facilitates both imaging and velocity analysis. The model is parameterized by the P-wave zero-dip normal-moveout velocity, the Thomsen parameter δ, anellipticity coefficient η and the symmetry-axis tilt θ. Assuming that the symmetry axis is orthogonal to reflectors, we study the influence of parameter errors on energy focusing in extended (space-lag) common-image gathers. Distortions in the anellipticity coefficient η introduce weak linear defocusing regardless of reflector dip, whereas δ influences both the energy focusing and depth scale of the migrated section. These results, which are consistent with the properties of the P-wave time-domain reflection moveout in tilted transversely isotropic media, provide important insights for implementation of velocity model-building in the image-domain. Then the algorithm is tested on a modified anticline section of the BP 2007 benchmark model.  相似文献   

2.
The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.  相似文献   

3.

逆时偏移作为一种高精度偏移方法已成为复杂构造成像的重要技术,描述纵波独立传播的延拓方程是各向异性介质逆时偏移的一个关键问题.在对VTI介质几个经典相速度近似公式回顾的基础上,针对常用于描述纯P波的Harlan近似公式在各向异性参数ε较大情况下近似精度较低的问题,本文对Harlan公式中的非椭圆项进行了修正,在非椭圆项前添加了一个与各向异性参数ε有关的修正系数,得到了三种改进型Harlan公式,并以近似精度最高的改进式为基础,推导了TTI介质纯P波方程.针对该伪微分方程,本文利用伪谱法和有限差分法联合实现波场延拓,对于常密度二阶方程,基于中心网格实现;对于一阶应力-速度方程则基于旋转交错网格实现.通过数值试验分析了TTI介质纯P波一阶应力-速度方程的近似精度,并以一阶纯P波方程为基础进行了TTI介质逆时偏移数值模拟试验.结果表明,本文给出的方法能够较准确地描述TTI介质纯P波波场特征,可以应用至各向异性介质逆时偏移.

  相似文献   

4.
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis.  相似文献   

5.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

6.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness.  相似文献   

7.
Summary This paper deals with the stresses produced by a moving stress discontinuity between two semi-infinite transversely isotropic media. The solutions for the stresses have been obtained in simple closed forms for certain types of moving stress discontinuity. Discontinuities in the normal stress as well as in the shear stress has been considered. The case in which one or both of the media are isotropic may be deduced as a special case from the results obtained here.  相似文献   

8.
The complex‐valued first‐arrival traveltime can be used to describe the properties of both velocity and attenuation as seismic waves propagate in attenuative elastic media. The real part of the complex‐valued traveltime corresponds to phase arrival and the imaginary part is associated with the amplitude decay due to energy absorption. The eikonal equation for attenuative vertical transversely isotropic media discretized with rectangular grids has been proven effective and precise to calculate the complex‐valued traveltime, but less accurate and efficient for irregular models. By using the perturbation method, the complex‐valued eikonal equation can be decomposed into two real‐valued equations, namely the zeroth‐ and first‐order traveltime governing equations. Here, we first present the topography‐dependent zeroth‐ and first‐order governing equations for attenuative VTI media, which are obtained by using the coordinate transformation from the Cartesian coordinates to the curvilinear coordinates. Then, we apply the Lax–Friedrichs sweeping method for solving the topography‐dependent traveltime governing equations in order to approximate the viscosity solutions, namely the real and imaginary parts of the complex‐valued traveltime. Several numerical tests demonstrate that the proposed scheme is efficient and accurate in calculating the complex‐valued P‐wave first‐arrival traveltime in attenuative VTI media with an irregular surface.  相似文献   

9.
10.
We propose a robust approach for the joint inversion of PP‐ and PSV‐wave angle gathers along different azimuths for the elastic properties of the homogeneous isotropic host rock and excess compliances due to the presence of fractures. Motivated by the expression of fluid content indicator in fractured reservoirs and the sensitivity of Lamé impedances to fluid type, we derive PP‐ and PSV‐wave reflection coefficients in terms of Lamé impedances, density, and fracture compliances for an interface separating two horizontal transversely isotropic media. Following a Bayesian framework, we construct an objective function that includes initial models. We employ the iteratively reweighted least‐squares algorithm to solve the inversion problem to estimate unknown parameters (i.e., Lamé impedances, density, and fracture compliances) from PP‐ and PSV‐wave angle gathers along different azimuths. Synthetic tests reveal that the unknown parameters estimated using the joint inversion approach match true values better than those estimated using a PP‐wave amplitude inversion only. A real data test indicates that reasonable results for subsurface fracture detection are obtained from the joint inversion approach.  相似文献   

11.
12.
Damage characterisation in solid media is studied in this work through ultrasonic measurements. A synthetic three‐dimensional printed sample including a system of horizontally aligned microcracks is used. In contrast to other manual fabrication methods presented in the literature, the construction process considered here ensures a better control and accuracy of size, shape, and spatial distribution of the microcrack network in the synthetic sample. The acoustic measurements were conducted through a specific device using triple acoustic sensors, which allows capturing at each incident direction three wave modes. The evolution of the ultrasonic velocities with respect to incident angle accounted for the damage‐induced anisotropy. The experimental results are then compared with some well‐known effective media theories in order to discuss their potential use for the following studies. Finally, we highlighted and compared the accuracy of these theories used for inversion procedure to quantify damage in the medium.  相似文献   

13.
Acoustic transversely isotropic models are widely used in seismic exploration for P‐wave processing and analysis. In isotropic acoustic media only P‐wave can propagate, while in an acoustic transversely isotropic medium both P and S waves propagate. In this paper, we focus on kinematic properties of S‐wave in acoustic transversely isotropic media. We define new parameters better suited for S‐wave kinematics analysis. We also establish the travel time and relative geometrical spreading equations and analyse their properties. To illustrate the behaviour of the S‐wave in multi‐layered acoustic transversely isotropic media, we define the Dix‐type equations that are different from the ones widely used for the P‐wave propagation.  相似文献   

14.
In recent years, wave‐equation imaged data are often presented in common‐image angle‐domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward‐continuation step from converting offset‐frequency planes into angle‐frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers.  相似文献   

15.
严彬  张广智  李林  杨睿  朱振宇  李超 《地球物理学报》2023,66(10):4349-4369

利用地震数据进行裂缝预测及流体识别对于裂缝性储层的勘探开发具有重要意义.针对单组旋转对称的倾斜裂缝诱导的TTI介质, 基于各向异性Gassmann方程, 推导了固液解耦纵波反射系数近似公式, 分析了不同条件下近似公式的精度.根据实际研究工区裂缝储层的特征, 选用高裂缝倾角近似公式, 通过奇异值分解从方位弹性阻抗中估算裂缝密度和裂缝方位, 进而分离和消除各向异性项, 建立流体等效体积模量及孔隙度贝叶斯反演预测方法.模型试算表明, 在信噪比大于2时, 流体等效体积模量、孔隙度和裂缝参数的估计较为可靠, 实际应用也验证了反演方法的有效性.

  相似文献   

16.
Compensation for geometrical spreading along the ray‐path is important in amplitude variation with offset analysis especially for not strongly attenuative media since it contributes to the seismic amplitude preservation. The P‐wave geometrical spreading factor is described by a non‐hyperbolic moveout approximation using the traveltime parameters that can be estimated from the velocity analysis. We extend the P‐wave relative geometrical spreading approximation from the rational form to the generalized non‐hyperbolic form in a transversely isotropic medium with a vertical symmetry axis. The acoustic approximation is used to reduce the number of parameters. The proposed generalized non‐hyperbolic approximation is developed with parameters defined by two rays: vertical and a reference rays. For numerical examples, we consider two choices for parameter selection by using two specific orientations for reference ray. We observe from the numerical tests that the proposed generalized non‐hyperbolic approximation gives more accurate results in both homogeneous and multi‐layered models than the rational counterpart.  相似文献   

17.
Lei Li 《Acta Geophysica》2008,56(2):518-528
In the paper by Chattopadhyay and Rajneesh (2006, “Reflection and refraction of waves at the interface of an isotropic medium over a highly anisotropic medium’, Acta Geophysica, vol. 54, no. 3, pp. 239–249), the authors proposed a process to calculate R/T (reflection and transmission) coefficients at the interface between isotropic and triclinic half-spaces, with incident qP waves in triclinic media. Unfortunately, besides several misprints, the authors made a fatal assumption that there is no transmitted SH wave generated in isotropic media, which led the successive analytical derivations and numerical calculations thoroughly wrong. In this paper, the errors are analyzed at length and corrections are given. Then an alternative approach to solve the problem is proposed and numerical results are shown and discussed.  相似文献   

18.
非均匀P\|偏振电磁波在导电界面的反射系数曲线   总被引:1,自引:1,他引:1       下载免费PDF全文
基于非均匀电磁波在导电媒质中传播时其相移常数和振幅衰减常数方向的不一致性,利用电磁波在导电媒质界面的边界条件,导出了非均匀P\|偏振电磁波的反射系数. 反射系数随入射角的变化曲线显示:当电磁波由电导率大的介质射向电导率小的介质时,在相移常数临界角和衰减常数临界角附近存在峰值,且反射系数的数值小于1,这一结果与全反射光的结果有明显的差异.  相似文献   

19.
流体饱和多孔隙介质弹性波方程边界元解法研究   总被引:2,自引:2,他引:2       下载免费PDF全文
基于流体饱和多孔隙各向同性介质模型,本文首先推导了流体饱和多孔隙介质中弹性波传播的频率域系统动力方程及边界积分方程,然后给出了流体饱和多孔隙介质弹性波方程的基本解,最后,利用本文给出的边界元方法对流体饱和多孔隙各向同性介质中的弹性波传播进行了数值模拟.结果表明:不论是从固相位移,还是液相位移的地震合成记录都能看到明显的慢速P波,本文提出的流体饱和多孔隙介质弹性波边界元法是有效可行的.  相似文献   

20.
We study the stability of source mechanisms inverted from data acquired at surface and near‐surface monitoring arrays. The study is focused on P‐wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in ‘buried’ geophones at the near‐surface. Stability was tested for two of the frequently observed source mechanisms: strike‐slip and dip‐slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double‐couple source mechanisms and use quantitatively the inversion allowing non‐double‐couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star‐like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike‐slip inversion is more stable than dip‐slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号