首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both of crop growth simulation models and remote sensing method have a high potential in crop growth monitoring and yield prediction. However, crop models have limitations in regional application and remote sensing in describing the growth process. Therefore, many researchers try to combine those two approaches for estimating the regional crop yields. In this paper, the WOFOST model was adjusted and regionalized for winter wheat in North China and coupled through the LAI to the SAIL–PROSPECT model in order to simulate soil adjusted vegetation index (SAVI). Using the optimization software (FSEOPT), the crop model was then re-initialized by minimizing the differences between simulated and synthesized SAVI from remote sensing data to monitor winter wheat growth at the potential production level. Initial conditions, which strongly impact phenological development and growth, and which are hardly known at the regional scale (such as emergence date or biomass at turn-green stage), were chosen to be re-initialized. It was shown that re-initializing emergence date by using remote sensing data brought simulated anthesis and maturity date closer to measured values than without remote sensing data. Also the re-initialization of regional biomass weight at turn-green stage led that the spatial distribution of simulated weight of storage organ was more consistent to official yields. This approach has some potential to aid in scaling local simulation of crop phenological development and growth to the regional scale but requires further validation.  相似文献   

2.
朱炯  杜鑫  李强子  张源  王红岩  赵云聪 《遥感学报》2022,26(7):1354-1367
区域尺度上精准、快速的作物单产估算可以有效地为国家粮食安全相关政策的制定提供数据支撑。本文针对县级估产时相和特征类型选择问题,基于遥感、气象和统计等多源数据,通过不同时相和特征要素之间的组合分析来探索其对于县级尺度冬小麦单产估算的影响。特征要素主要考虑作物长势、环境(水分和光温条件)和农田景观3个类型;时相主要考虑由冬小麦生长过程NDVI (Normalized Difference Vegetation Index)曲线特征提取的5个关键时段(P1—P5)。利用不同时相与类型特征的组合与统计单产构建随机森林回归模型,根据精度评价结果分析各组合的优劣。2014年—2017年的数据用来建模,2018年数据用来验证。对于单时相,P2、P3、P4的表现明显好于P1和P5;多时相的准确度明显优于单时相,其中P2、P4的组合效果最佳。对于不同类型的特征要素,作物长势特征参量对估产精度的影响最大,而水分影响和光温条件等环境因子的加入对估产准确性并没有明显提升,农田景观参数的加入能够有效提升估产的准确性。在最优组合的基础上,剔除冗余变量优选出5个重要的指标因子(PROP、NDVI_P2、B2_P2、...  相似文献   

3.
Within-season forecasting of crop yields is of great economic, geo-strategic and humanitarian interest. Satellite Earth Observation now constitutes a valuable and innovative way to provide spatio-temporal information to assist such yield forecasts. This study explores different configurations of remote sensing time series to estimate of winter wheat yield using either spatially finer but temporally sparser time series (5daily at 100 m spatial resolution) or spatially coarser but denser (300 m and 1 km at daily frequency) time series. Furthermore, we hypothesised that better yield estimations could be made using thermal time, which is closer to the crop physiological development. Time series of NDVI from the PROBA-V instrument, which has delivered images at a spatial resolution of 100 m, 300 m and 1 km since 2013, were extracted for 39 fields for field and 56 fields for regional level analysis across Northern France during the growing season 2014-2015. An asymmetric double sigmoid model was fitted on the NDVI series of the central pixel of the field. The fitted model was subsequently integrated either over thermal time or over calendar time, using different baseline NDVI thresholds to mark the start and end of the cropping season. These integrated values were used as a predictor for yield using a simple linear regression and yield observations at field level. The dependency of this relationship on the spatial pixel purity was analysed for the 100 m, 300 m and 1 km spatial resolution. At field level, depending on the spatial resolution and the NDVI threshold, the adjusted ranged from 0.20 to 0.74; jackknifed – leave-one-field-out cross validation – RMSE ranged from 0.6 to 1.07 t/ha and MAE ranged between 0.46 and 0.90 t/ha for thermal time analysis. The best results for yield estimation (adjusted = 0.74, RMSE =0.6 t/ha and MAE =0.46 t/ha) were obtained from the integration over thermal time of 100 m pixel resolution using a baseline NDVI threshold of 0.2 and without any selection based on pixel purity. The field scale yield estimation was aggregated to the regional scale using 56 fields. At the regional level, there was a difference of 0.0012 t/ha between thermal and calendar time for average yield estimations. The standard error of mean results showed that the error was larger for a higher spatial resolution with no pixel purity and smaller when purity increased. These results suggest that, for winter wheat, a finer spatial resolution rather than a higher revisit frequency and an increasing pixel purity enable more accurate yield estimations when integrated over thermal time at the field scale and at the regional scale only if higher pixel purity levels are considered. This method can be extended to larger regions, other crops, and other regions in the world, although site and crop-specific adjustments will have to include other threshold temperatures to reflect the boundaries of phenological activity. In general, however, this methodological approach should be applicable to yield estimation at the parcel and regional scales across the world.  相似文献   

4.
本文以北京顺义县为例,以气象因子与垂直植被指数(PVI)作为参数,用灰色模型G(0,2)和逐段订正模型即阶乘模型,建立冬小表遥感信息-气象因子综合模型。计算结果表明,改进后的综合模型其平均精度比单纯的遥感信息模型提高近7%,个别年份达到10%以上。  相似文献   

5.
Remote sensing images are widely used to map leaf area index (LAI) continuously over landscape. The objective of this study is to explore the ideal image features from Chinese HJ-1 A/B CCD images for estimating winter wheat LAI in Beijing. Image features were extracted from such images over four seasons of winter wheat growth, including five vegetation indices (VIs), principal components (PC), tasseled cap transformations (TCT) and texture parameters. The LAI was significantly correlated with the near-infrared reflectance band, five VIs [normalized difference vegetation index, enhanced vegetation index (EVI), modified nonlinear vegetation index (MNLI), optimization of soil-adjusted vegetation index, and ratio vegetation index], the first principal component (PC1) and the second TCT component (TCT2). However, these image features cannot significantly improve the estimation accuracy of winter wheat LAI in conjunction with eight texture measures. To determine the few ideal features with the best estimation accuracy, partial least squares regression (PLSR) and variable importance in projection (VIP) were applied to predict LAI values. Four remote sensing features (TCT2, PC1, MNLI and EVI) were chosen based on VIP values. The result of leave-one-out cross-validation demonstrated that the PLSR model based on these four features produced better result than the ten features’ model, throughout the whole growing season. The results of this study suggest that selecting a few ideal image features is sufficient for LAI estimation.  相似文献   

6.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。  相似文献   

7.
ABSTRACT

Agricultural drought threatens food security. Numerous remote-sensing drought indices have been developed, but their different principles, assumptions and physical quantities make it necessary to compare their suitability for drought monitoring over large areas. Here, we analyzed the performance of three typical remote sensing-based drought indices for monitoring agricultural drought in two major agricultural production regions in Shaanxi and Henan provinces, northern China (predominantly rain-fed and irrigated agriculture, respectively): vegetation health index (VHI), temperature vegetation dryness index (TVDI) and drought severity index (DSI). We compared the agreement between these indices and the standardized precipitation index (SPI), soil moisture, winter wheat yield and National Meteorological Drought Monitoring (NMDM) maps. On average, DSI outperformed the other indices, with stronger correlations with SPI and soil moisture. DSI also corresponded better with soil moisture and NMDM maps. The jointing and grain-filling stages of winter wheat are more sensitive to water stress, indicating that winter wheat required more water during these stages. Moreover, the correlations between the drought indices and SPI, soil moisture, and winter wheat yield were generally stronger in Shaanxi province than in Henan province, suggesting that remote-sensing drought indices provide more accurate predictions of the impacts of drought in predominantly rain-fed agricultural areas.  相似文献   

8.
Quantification of crop residue biomass on cultivated lands is essential for studies of carbon cycling of agroecosystems, soil-atmospheric carbon exchange and Earth systems modeling. Previous studies focus on estimating crop residue cover (CRC) while limited research exists on quantifying crop residue biomass. This study takes advantage of the high temporal resolution of the China Environmental Satellite (HJ-1) data and utilizes the band configuration features of HJ-1B data to establish spectral angle indices to estimate crop residue biomass. Angles formed at the NIRIRS vertex by the three vertices at R, NIRIRS, and SWIR (ANIRIRS) of HJ-1B can effectively indicate winter wheat residue biomass. A coefficient of determination (R2) of 0.811 was obtained between measured winter wheat residue biomass and ANIRIRS derived from simulated HJ-1B reflectance data. The ability of ANIRIRS for quantifying winter wheat residue biomass using HJ-1B satellite data was also validated and evaluated. Results indicate that ANIRIRS performed well in estimating winter wheat residue biomass with different residue treatments; the root mean square error (RMSE) between measured and estimated residue biomass was 0.038 kg/m2. ANIRIRS is a potential method for quantifying winter wheat residue biomass at a large scale due to wide swath width (350 km) and four-day revisit rate of the HJ-1 satellite. While ANIRIRS can adequately estimate winter wheat residue biomass at different residue moisture conditions, the feasibility of ANIRIRS for winter wheat residue biomass estimation at different fractional coverage of green vegetation and different environmental conditions (soil type, soil moisture content, and crop residue type) needs to be further explored.  相似文献   

9.
In this study, an empirical assessment approach for the risk of crop loss due to water stress was developed and used to evaluate the risk of winter wheat loss in China, the United States, Germany, France and the United Kingdom. We combined statistical and remote sensing data on crop yields with climate data and cropland distribution to model the effect of water stress from 1982 to 2011. The average value of winter wheat loss due to water stress for the three European countries was about ?931 kg/ha, which was higher than that in China (?570 kg/ha) and the United States (?367 kg/ha). Our study has important implications for the operational assessment of crop loss risk at a country or regional scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapotranspiration to estimate water stress, improving the method for downscaling of statistical crop yield data and establishing more sophisticated zoning methods.  相似文献   

10.
Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.  相似文献   

11.
Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. Timely and accurate crop yield forecasts for Ukraine at regional level become a key element in providing support to policy makers in food security. In this paper, feasibility and relative efficiency of using moderate resolution satellite data to winter wheat forecasting in Ukraine at oblast level is assessed. Oblast is a sub-national administrative unit that corresponds to the NUTS2 level of the Nomenclature of Territorial Units for Statistics (NUTS) of the European Union. NDVI values were derived from the MODIS sensor at the 250 m spatial resolution. For each oblast NDVI values were averaged for a cropland map (Rainfed croplands class) derived from the ESA GlobCover map, and were used as predictors in the regression models. Using a leave-one-out cross-validation procedure, the best time for making reliable yield forecasts in terms of root mean square error was identified. For most oblasts, NDVI values taken in April–May provided the minimum RMSE value when comparing to the official statistics, thus enabling forecasts 2–3 months prior to harvest. The NDVI-based approach was compared to the following approaches: empirical model based on meteorological observations (with forecasts in April–May that provide minimum RMSE value) and WOFOST crop growth simulation model implemented in the CGMS system (with forecasts in June that provide minimum RMSE value). All three approaches were run to produce winter wheat yield forecasts for independent datasets for 2010 and 2011, i.e. on data that were not used within model calibration process. The most accurate predictions for 2010 were achieved using the CGMS system with the RMSE value of 0.3 t ha−1 in June and 0.4 t ha−1 in April, while performance of three approaches for 2011 was almost the same (0.5–0.6 t ha−1 in April). Both NDVI-based approach and CGMS system overestimated winter wheat yield comparing to official statistics in 2010, and underestimated it in 2011. Therefore, we can conclude that performance of empirical NDVI-based regression model was similar to meteorological and CGMS models when producing winter wheat yield forecasts at oblast level in Ukraine 2–3 months prior to harvest, while providing minimum requirements to input datasets.  相似文献   

12.
Soil respiration (Rs) is of great importance to the global carbon balance. Remote sensing of Rs is challenging because of (1) the lack of long-term Rs data for model development and (2) limited knowledge of using satellite-based products to estimate Rs. Using 8-years (2002–2009) of continuous Rs measurements with nonsteady-state automated chamber systems at a Canadian boreal black spruce stand (SK-OBS), we found that Rs was strongly correlated with the product of the normalized difference vegetation index (NDVI) and the nighttime land surface temperature (LSTn) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The coefficients of the linear regression equation of this correlation between Rs and NDVI × LSTn could be further calibrated using the MODIS leaf area index (LAI) product, resulting in an algorithm that is driven solely by remote sensing observations. Modeled Rs closely tracked the seasonal patterns of measured Rs and explained 74–92% of the variance in Rs with a root mean square error (RMSE) less than 1.0 g C/m2/d. Further validation of the model from SK-OBS site at another two independent sites (SK-OA and SK-OJP, old aspen and old jack pine, respectively) showed that the algorithm can produce good estimates of Rs with an overall R2 of 0.78 (p < 0.001) for data of these two sites. Consequently, we mapped Rs of forest landscapes of Saskatchewan using entirely MODIS observations for 2003 and spatial and temporal patterns of Rs were well modeled. These results point to a strong relationship between the soil respiratory process and canopy photosynthesis as indicated from the greenness index (i.e., NDVI), thereby implying the potential of remote sensing data for detecting variations in Rs. A combination of both biological and environmental variables estimated from remote sensing in this analysis may be valuable in future investigations of spatial and temporal characteristics of Rs.  相似文献   

13.
Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region.  相似文献   

14.
Winter wheat biomass was estimated using HJ CCD and MODIS data, combined with a radiation use efficiency model. Results were validated with ground measurement data. Winter wheat biomass estimated with HJ CCD data correlated well with observed biomass in different experiments (coefficients of determination R2 of 0.507, 0.556 and 0.499; n?=?48). In addition, R2 values between MODIS estimated and observed biomass are 0.420, 0.502 and 0.633. Even if we downscaled biomass estimated using HJ CCD data to MODIS pixel size (9?×?9 HJ CCD pixels to approximate that MODIS pixel), R2 values between estimated and observed biomass were still higher than those from MODIS. We conclude that estimation with remote sensing data, such as the HJ CCD data with high spatial resolution and shorter revisit cycle, can show more detail in spatial pattern and improve the application of remote sensing on a local scale. There is also potential for applying the approach to many other studies, including agricultural production estimation, crop growth monitoring and agricultural ecosystem carbon cycle studies.  相似文献   

15.
项鑫  马林娜  路朋 《测绘科学》2019,44(6):212-216
针对现有植被水分反演算法在华北平原地区适用性差、反演精度低、不能实施有效监测的问题,该文基于地面实测冬小麦植被含水量(VWC)数据,基于归一化型和比值型植被水分指数这两种常见的指数类型,提出调节植被水分指数以削弱土壤背景的影响,使用多个波段反射率数据反演VWC,提高拟合精度80%以上,发展适用于华北平原的农作物水分含量反演模型。拟合冬小麦植被含水量的决定系数为0.51,均方根误差为0.95(kg·m^-2)。结果表明:调节植被水分指数能够削弱土壤背景影响,大幅度提高植被水分反演精度;同一种指数计算形式中,在水汽吸收谷内,基于更长波段反射率的植被水分指数反演精度更高;归一化型和比值型植被水分指数在反演精度方面无明显优劣,归一化型植被水分指数反演精度。  相似文献   

16.
Crop monitoring during the growing season is important for regional management decisions and biomass prediction. The objectives of this study were to develop, improve and validate a scale independent biomass model. Field studies were conducted in Huimin County, Shandong Province of China, during the 2006–2007 growing season of winter wheat (Triticum aestivum L.). The field design had a multiscale set-up with four levels which differed in their management, such as nitrogen fertilizer inputs and cultivars, to create different biomass conditions: small experimental fields (L1), large experimental fields (L2), small farm fields (L3), and large farm fields (L4). L4, planted with different winter wheat varieties, was managed according to farmers’ practice while L1 through L3 represented controlled field experiments. Multitemporal spectral measurements were taken in the fields, and biomass was sampled for each spectral campaign. In addition, multitemporal Hyperion data were obtained in 2006 and 2007. L1 field data were used to develop biomass models based on the relation between the winter wheat spectra and biomass: several published vegetation indices, including NRI, REP, OSAVI, TCI, and NDVI, were investigated. A new hyperspectral vegetation index, which uses a four-band combination in the NIR and SWIR domains, named GnyLi, was developed. Following the multiscale concept, the data of higher levels (L2 through L4) were used stepwise to validate and improve the models of the lower levels, and to transfer the improved models to the next level. Lastly, the models were transferred and validated at the regional scale using Hyperion images of 2006 and 2007. The results showed that the GnyLi and NRI models, which were based on the NIR and SWIR domains, performed best with R2 > 0.74. All the other indices explained less than 60% model variability. Using the Hyperion data for regionalization, GnyLi and NRI explained 81–89% of the biomass variability. These results highlighted that GnyLi and NRI can be used together with hyperspectral images for both plot and regional level biomass estimation. Nevertheless, additional studies and analyses are needed to test its replicability in other environmental conditions.  相似文献   

17.
利用MODIS植被指数时间序列这一特性,以北京市通州及周边为实验区,冬小麦种植面积为研究对象,提出 了农作物种植面积指数模型(Pan-CPI模型)的概念,并构造了冬小麦特征物候期植被指数与种植面积的定量函数关系, 通过样区TM影像求解关键参数,对研究区冬小麦种植面积测量方法进行了试验研究。研究结果表明:(1)Pan-CPI模 型能够很好地反映特定目标农作物种植面积状况,为基于植被指数时间序列影像识别农作物种植面积提供了新方法; (2)精度分析结果表明:Pan-CPI模型具有很高的稳定性,且不受样本变化的影响,只要达到满足模型计算的样本量(如: 5%),多次测量结果间具有很好的一致性。选取MODIS 6×6像元大小的窗口时,TM样本的复相关系数(R2)稳定在0.85 左右,与TM结果比较,窗口相对精度稳定在95%左右,区域精度稳定在92%以上,经调整的区域精度高达96%以上; (3)对于种植结构复杂、目标作物种植破碎的地区,Pan-CPI模型可以充分利用MODIS植被指数时间序列的优势,有效改 善TM单时相和多时相提取信息因时相缺失无法表征作物变化的不足。  相似文献   

18.
Crop identification is the basis of crop monitoring using remote sensing. Remote sensing the extent and distribution of individual crop types has proven useful to a wide range of users, including policy-makers, farmers, and scientists. Northern China is not merely the political, economic, and cultural centre of China, but also an important base for grain production. Its main grains are wheat, maize, and cotton. By employing the Fourier analysis method, we studied crop planting patterns in the Northern China plain. Then, using time-series EOS-MODIS NDVI data, we extracted the key parameters to discriminate crop types. The results showed that the estimated area and the statistics were correlated well at the county-level. Furthermore, there was little difference between the crop area estimated by the MODIS data and the statistics at province-level. Our study shows that the method we designed is promising for use in regional spatial scale crop mapping in Northern China using the MODIS NDVI time-series.  相似文献   

19.
Soil respiration (Rs) data from 45 plots were used to estimate the spatial patterns of Rs during the peak growing seasons of winter wheat and summer maize in Julu County, North China, by combining satellite remote sensing data, field-measured data, and a support vector regression (SVR) model. The observed Rs values were well reproduced by the model at the plot scale, with a root-mean-square error (RMSE) of 0.31 μmol CO2 m−2 s−1 and a coefficient of determination (R2) of 0.73. No significant difference was detected between the prediction accuracy of the SVR model for winter wheat and summer maize. With forcing from satellite remote sensing data and gridded soil property data, we used the SVR model to predict the spatial distributions of Rs during the peak growing seasons of winter wheat and summer maize rotation croplands in Julu County. The SVR model captured the spatial variations of Rs at the county scale. The satellite-derived enhanced vegetation index was found to be the most important input used to predict Rs. Removal of this variable caused an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.42 μmol CO2 m−2 s−1. Soil properties such as soil organic carbon (SOC) content and soil bulk density (SBD) were the second most important factors. Their removal led to an RMSE increase from 0.31 μmol CO2 m−2 s−1 to 0.37 μmol CO2 m−2 s−1. The SVR model performed better than multiple regression in predicting spatial variations of Rs in winter wheat and summer maize rotation croplands, as shown by the comparison of the R2 and RMSE values of the two algorithms. The spatial patterns of Rs are better captured using the SVR model than performing multiple regression, particularly for the relatively high and relatively low Rs values at the center and northeast study areas. Therefore, SVR shows promise for predicting spatial variations of Rs values on the basis of remotely sensed data and gridded soil property data at the county scale.  相似文献   

20.
遥感技术在主要粮食作物估产中的应用   总被引:3,自引:0,他引:3  
张东霞  张继贤  常帆  梁勇 《测绘科学》2014,39(11):95-98,103
文章分析了国内外遥感技术在主要粮食作物估产中应用现状,探讨了遥感技术在作物估产领域的研究进展,研究了作物气候产量预报模型、遗传算法结合神经网络模型、基于人机交互的反演模型、基于决策树分类的县域估产模型、单产估测模型、基于SCE_UA算法的CERES_Wheat模型、雷达遥感估产模型等在我国主要农作物估产中的应用;分析表明遥感关键技术及模型选择为农作物估产精度的提高提供了重要的技术支持.最后对作物估产遥感技术发展趋势及农业信息化相关技术做了展望,指出综合遥感与计算机技术开发自动化系统、推进物联网与遥感技术结合等问题,是进一步的研究趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号