首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.  相似文献   

2.
Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1?–?8 Å wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rise and decay times, and duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and ≥?M1.0-class flares. It is found that the fraction of the SDE ≥?M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude “quasi-biennial” oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE ≥?M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense ≥?M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.  相似文献   

3.
Flare Index During the Rising Phase of Solar Cycle 23   总被引:1,自引:0,他引:1  
Ataç  Tamer  Özgüç  Atila 《Solar physics》2001,198(2):399-407
  相似文献   

4.
Chowdhury  Partha  Dwivedi  B. N. 《Solar physics》2011,270(1):365-383
We investigate the presence and temporal evolution of short- and intermediate-term periodicities in the daily data of sunspot numbers and coronal index for the time span from May 1996 to December 2008, which covers the entire Solar Cycle 23. The daily sunspot number data have been analyzed for the full disk, and for northern and southern hemispheres of the Sun. Using the wavelet power spectrum technique, we find a number of quasi-periodic oscillations in all the data sets. We also find a prominent period of 22 to 35 days in the high-frequency range, and detect the Rieger period of 150 to 160 days in both data sets during different phases of Cycle 23. We also detect ∼1.3 year oscillation in both sunspot and coronal index time series. In addition, we find a number of other short and mid-term periods. We discuss possible explanations of the observed periodicities in the light of previous results and existing numerical models.  相似文献   

5.
Ataç  Tamar  Özgüç  Atila 《Solar physics》1998,180(1-2):397-407
  相似文献   

6.
7.
The Pioneer Venus Orbiter (PVO) had on board the electron temperature probe experiment which measured temperature and concentration of electrons in the ionosphere of Venus. When the probe was outside the Venus ionosphere and was in the solar wind, the probe current was entirely due to solar photons striking the probe surface. This probe thus measured integrated solar EUV flux (Ipe) over a 13-year period from January 1979 to December 1991, thereby covering the declining phase of solar cycle 21 and the rising phase of solar cycle 22. In this paper, we examine the behavior of Ipe translated to the solar longitude of Earth (to be called EIpe) during the two solar cycles. We find that total EUV flux changed by about 60% during solar cycle 21 and by about 100% in solar cycle 22. We also compare this flux with other solar activity indicators such as F_10.7 , Lα, and the solar magnetic field. We find that while the daily values of EIpe are highly correlated with F_10.7 (correlation coefficient 0.87), there is a large scatter in EIpe for any value of this Earth-based index. A comparison of EIpe with SME and UARS SOLSTICE Lα measurements taken during the same period shows that EIpe tracks Lα quite faithfully with a correlation coefficient of 0.94. Similar comparison with the solar magnetic field (Bs) shows that EIpe correlates better with Bs than with F_10.7 . We also compare EIpe with total solar irradiance measured during the same period.  相似文献   

8.
Observations of the forbidden coronal lines Fe xiv 530.3 nm and Fe x 637.4 nm obtained at the National Solar Observatory at Sacramento Peak are used to determine the variation of coronal temperature at latitudes above 30 during solar activity cycles 21–23. Features of the long-term variation of emission in the two lines are also discussed. Temperatures at latitudes below 30 are not studied because the technique used to determine the coronal temperature is not applicable in active regions. The polar temperature varies cyclically from approximately 1.3 to 1.7 MK. The temperatures are similar in both hemispheres. The temperature near solar minimum decreases strongly from mid-latitudes to the poles. The temperature of the corona above 80 latitude generally follows the sunspot cycle, with minima in 1985 and 1995–1996 (cf. 1986 and 1996 for the smoothed sunspot number, Rz) and maxima in 1989 and 2000 (cf. 1989 and 2000 for Rz). The temperature of the corona above 30 latitude at solar maximum is nearly uniform, i.e., there is little latitude dependence. If the maximum temperatures of cycles 22 and 23 are aligned in time (superposed epochs), the average annual N + S temperature (average of the northern and southern hemisphere) in cycle 23 is hotter than that in cycle 22 at all times both above 80 latitude and above 30 latitude. The difference in the average annual N + S maximum temperature between cycles 23 and 22 was 56 kK near the poles and 64 kK for all latitudes above 30. Cycle 23 was also hotter at mid-latitudes than cycle 22 by 60 kK. The last 3 years of cycle 21 were hotter than the last 3 years of cycle 22. The difference in average annual N + S temperatures at the end of cycles 21 and 22 was 32 kK near the poles and 23 kK for all latitudes above 30. Cycle 21 was also hotter at mid-latitudes than cycle 22 by at least 90 kK. Thus, there does not seem to be a solar-cycle trend in the low-coronal temperature outside of active regions.  相似文献   

9.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

10.
We present identifications of coronal holes (CHs) from observations in the He?i 10?830 Å line made at Kitt Peak Observatory (from 1975 to 2003) and in the EUV 195 Å wavelength with SOHO/EIT (from 1996 to 2012). To determine whether a feature is a CH we have developed semi-automatic techniques for delineating CH borders on synoptic charts and for subsequent mapping of these borders on magnetic-field charts. Using these techniques, we superimposed CH borders on magnetic-field charts over the time interval from 1975 to 2012. A major contribution to the total area was made by high-latitude CHs, but in the declining phase of solar cycle 23, the contribution from low-latitude CHs increased substantially. Variations in the flux of Galactic cosmic rays and those in the inclination angle of the heliospheric current sheet followed the cyclic variations of CH areas. High-latitude CHs affect the properties of the solar wind in the ecliptic plane.  相似文献   

11.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

12.
13.
In this work we study the mid-term periodicities (MTPs), between 1 and 2 years, of the sunspot groups and the flare index (FI), by separating the data into hemispheres and spectral bands (SBs) according to the most significant periodicities presented by these phenomena. We found that the MTP of sunspot groups has a diminished power during the Modern Minimum and an increased power during the Modern Maximum, with the exception of cycle 20. For flares, the MTP has a diminished power during the low activity cycle 20, and an increased power during cycles 21 and 22. Therefore, for both sunspot groups and FI, cycle 20 shows a very diminished power followed by the active and higher-power cycles 21 and 22; cycle 23 shows a weaker power than cycles 21 and 22. It is uncertain whether MTP can be a precursor of a long-term minimum of solar activity or not, as has been previously suggested. Also, there is no one-to-one correlation between the cycle intensity and the importance of MTP. Concerning the quasi-biennial periodicities and the theory of two kinds of dynamos, we notice the tendency that higher-power cycles mean weaker coupling in the model. Concerning the hemispheric north-south asymmetry, for sunspot groups the southern hemisphere dominates in most of the SBs, while for FI the northern hemisphere dominates for all the SBs. Additionally, the time lag found between the two hemispheres indicates that the degrees of coupling in the photosphere for sunspot groups and in the corona for flares are between moderate and strong. Finally, the modulation shown by the MTP time series suggests that these periodicities are the product of chaotic quasi-periodic processes and not of stochastic processes.  相似文献   

14.
Solar variability is often cast in terms of radiative emission and the associated long-term climate response; however, growing societal reliance on technology is creating more interest in day-to-day solar variability. This variability is associated with both solar radiative and solar wind emissions. In this paper we explore the combined effects of radiative and solar wind fluctuations at Earth. The fluctuations in radiative and geomagnetic power create an extended interval of solar maximum for the upper atmosphere. We use a trio of empirical models to estimate, over the last three solar cycles, the relative contributions of solar extreme ultraviolet (UV) power, Joule power, and particle kinetic power to the Earth’s upper atmosphere energy budget. Daily power values are derived from three source models. The SOLAR2000 solar irradiance specification model provides estimates of the daily extreme and far UV solar power input. Geomagnetic power is derived from a combination of satellite-estimated particle precipitation power and an empirical model of Joule power from hemispherically integrated estimates of high-latitude energy deposition. During the interval 1975 to 2003, the average daily contributions were: particles – 36 GW, Joule – 95 GW and solar – 464 GW for a total of 595 GW. Solar wind-driven geomagnetic power provided 22% of the total global upper atmospheric energy. In the top 15 power events, geomagnetic power contributed two-thirds of the total power budget. In each of these events, Joule power alone exceeded solar power. With rising activity, Joule power becomes the most variable element of solar upper atmosphere interactions.  相似文献   

15.
The NOAA listings of solar flares in cycles 21?–?24, including the GOES soft X-ray magnitudes, enable a simple determination of the number of flares each flaring active region produces over its lifetime. We have studied this measure of flare productivity over the interval 1975?–?2012. The annual averages of flare productivity remained approximately constant during cycles 21 and 22, at about two reported M- or X-flares per region, but then increased significantly in the declining phase of cycle 23 (the years 2004?–?2005). We have confirmed this by using the independent RHESSI flare catalog to check the NOAA events listings where possible. We note that this measure of solar activity does not correlate with the solar cycle. The anomalous peak in flare productivity immediately preceded the long solar minimum between cycles 23 and 24.  相似文献   

16.
Solar System Research - In the current investigation we have studied the distribution as well as the asymmetry of solar X-ray flares during the period 1976–2017 which corresponds to solar...  相似文献   

17.
It has been argued that the highest intensities measured near 1 AU during large solar energetic particle events occur in association with the passage of interplanetary shocks driven by coronal mass ejections, whereas the intensities measured early in the events (known as the prompt component) are bounded by a maximum intensity plateau known as the streaming limit. A few events in Solar Cycle 23 showed prompt components with intensities above the previously determined streaming limit. One of the scenarios proposed to explain intensities that exceed this limit in these events invokes the existence of transient plasma structures beyond 1 AU able to confine and/or mirror energetic particles. We study whether other particle events with prompt-component intensities close to the previously determined streaming limit are similarly affected by the presence of interplanetary structures. Whereas such structures were observed in four out of the nine events studied here, we conclude that only the events on 22 October 1989, 29 October 2003, and 17 January 2005 show interplanetary structures that can have modified the transport conditions in a way similar to those events with prompt components exceeding the previously determined streaming limit. The other six events with prompt components close to the previously determined streaming limit were characterized by either a low level of pre-event solar activity and/or the absence of transient interplanetary structures able to modify the transport of energetic particles.  相似文献   

18.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   

19.
To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using cross-correlation analysis. The main results are as follows: (1) The flare index and sunspot number have synchronous phase for cycles 21 and 22 in the northern hemisphere and for cycle 20 in the southern hemisphere. (2) The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. (3) For the entire Sun, the flare index has a noticeable time lead for cycles 20 and 23, a time lag for cycle 21, and no time lag or time lead for cycle 22 with respect to sunspot number. (4) The solar radio flux has a time lag for cycles 22 and 23 and no time lag or time lead for cycles 20 and 21 with respect to sunspot number. (5) For the four cycles, the sunspot number and flare index in the northern hemisphere are all leading to the ones in the southern hemisphere. These results may be instructive to the physical processes of flare energy storage and dissipation.  相似文献   

20.
We investigate the spatial and temporal variations of the high-degree mode frequencies calculated over localized regions of the Sun during the extended minimum phase between solar cycles 23 and 24. The frequency shifts measured relative to the spatial average over the solar disk indicate that the correlation between the frequency shift and magnetic field strength during the low-activity phase is weak. The disk-averaged frequency shifts computed relative to a minimal activity period also reveal a moderate correlation with different activity indices, with a maximum linear correlation of about 72?%. From the investigation of the frequency shifts at different latitudinal bands, we do not find a consensus period for the onset of solar cycle 24. The frequency shifts corresponding to most of the latitudes in the northern hemisphere and 30° south of the equator indicate the minimum epoch to be February 2008, which is earlier than inferred from solar activity indices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号