首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Andrew F Cheng 《Icarus》2004,169(2):357-372
A new synthesis of asteroid collisional evolution is motivated by the question of whether most asteroids larger than ∼1 km size are strengthless gravitational aggregates (rubble piles). NEAR found Eros not to be a rubble pile, but a shattered collisional fragment, with a through-going fracture system, and an average of about 20 m regolith cover. Of four asteroids visited by spacecraft, none appears likely to be a rubble pile, except perhaps Mathilde. Nevertheless, current understanding of asteroid collisions and size-dependent strength, and the observed distribution of rotation rates versus size, have led to a theoretical consensus that many or most asteroids larger than 1 km should be rubble piles. Is Eros, the best-observed asteroid, highly unusual because it is not a rubble pile? Is Mathilde, if it is a rubble pile, like most asteroids? What would be expected for the small asteroid Itokawa, the MUSES-C sample return target? An asteroid size distribution is synthesized from the Minor Planet Center listing and results of the Sloan Digital Sky Survey, an Infrared Space Observatory survey, the Small Main-belt Asteroid Spectroscopic Survey and the Infrared Astronomical Satellite survey. A new picture emerges of asteroid collisional evolution, in which the well-known Dohnanyi result, that the size distribution tends toward a self-similar form with a 2.5-index power law, is overturned because of scale-dependent collision physics. Survival of a basaltic crust on Vesta can be accommodated, together with formation of many exposed metal cores. The lifetimes against destruction are estimated as 3 Gyr at the size of Eros, 10 Gyr at ten times that size, and 40 Gyr at the size of Vesta. Eros as a shattered collisional fragment is not highly unusual. The new picture reveals the new possibility of a transition size in the collisional state, where asteroids below 5 km size would be primarily collisional breakup fragments whereas much larger asteroids are mostly eroded or shattered survivors of collisions. In this case, well-defined families would be found in asteroids larger than about 5 km size, but for smaller asteroids, families may no longer be readily separated from a background population. Moreover, the measured boulder size distribution on Eros is re-interpreted as a sample of impactor size distributions in the asteroid belt. The regolith on Eros may result largely from the last giant impact, and the same may be true of Itokawa, in which case about a meter of regolith would be expected there. Even a small asteroid like Itokawa may be a shattered object with regolith cover.  相似文献   

2.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

3.
Rotational data on 321 asteroids observed as of late 1978 are analyzed. Selection effects within the sample are discussed and used to define a data set consisting of 134 main-belt, nonfamily asteroids having reliably determined periods and amplitudes based on photoelectric observations. In contrast to A. W. Harris and J. A. Burns (1979, Icarus40, 115–144) we found no significant correlation between rotational properties and compositional type. Smaller asteroids have a greater range of rotational amplitudes than the largest asteroids but are not, on the average, appreciably more elongated. While no definite relationship between asteroid size and rotation rate was found the distribution is not random. The largest asteroids have rotation periods near 7 hr compared with 10 hr for the smaller. A group of large, rapidly rotating, high-amplitude asteroids is recognized. A pronounced change in rotational properties occurs near this size range (diam = 200 ± 50 km) which also corresponds to the size at which a change of slope occurs in the size frequency distribution. We believe this size range represents a transition region between very large, rapidly rotating, low-amplitude (primordial?) objects and smaller ones having a considerably greater range of periods and amplitudes. Asteroids in this transition size range display an increase in rotational amplitude with increasing spin rate; other than this, however, there is no correlation between period and amplitude. The region of low spatial density in the asteroid belt centered near 2.9 AU and isolated from the inner and outer belt by the 2:5 and 3:7 commensurabilities is shown to be a region in which non-C or -S asteroids are overrepresented and which have marginally higher rotational amplitudes than those located in more dense regions. We attribute disagreements between our results and other studies of this type to the inclusion of non-main-belt asteroids and photographic data in the earlier analyses.  相似文献   

4.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body.  相似文献   

5.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   

6.
B. Zellner  J. Gradie 《Icarus》1976,28(1):117-123
Linear polarizations measured for asteroid 433 Eros at various wavelengths and at solar phase angles ranging from 9° to 53° are presented. The polarization results are entirely typical of main-belt S asteroids, and indicate a dusty surface with geometric albedo 0.20. The derived effective diameter at photometric maximum is 21 km. Eros is quite uniform polarimetrically; no dependence on aspect is detected, and the polarization is shown to be constant during a single rotation with a precision of one part in forty.  相似文献   

7.
We study the dynamical evolution of the Hilda group of asteroids trough numerical methods, performing also a collisional pseudo-evolution of the present population, in order to calculate the rate of evaporation and its contribution to the cratering history of the Galilean satellites. If the present population of small asteroids in the Hilda's region follows the same size distribution observed at larger radii, we find that this family is the main contributor to the production of small craters (i.e., crater with diameters d∼4 km) on the Galilean system, overcoming the production by Jupiter Family Comets and by Trojan asteroids. The results of this investigation encourage further observational campaigns, in order to determine the size distribution function of small Hilda asteroids.  相似文献   

8.
The strength of regolith and rubble pile asteroids   总被引:1,自引:0,他引:1  
We explore the hypothesis that, due to small van der Waals forces between constituent grains, small rubble pile asteroids have a small but nonzero cohesive strength. The nature of this model predicts that the cohesive strength should be constant independent of asteroid size, which creates a scale dependence with relative strength increasing as size decreases. This model counters classical theory that rubble pile asteroids should behave as scale‐independent cohesionless collections of rocks. We explore a simple model for asteroid strength that is based on these weak forces, validate it through granular mechanics simulations and comparisons with properties of lunar regolith, and then explore its implications and ability to explain and predict observed properties of small asteroids in the NEA and Main Belt populations, and in particular of asteroid 2008 TC3. One conclusion is that the population of rapidly rotating asteroids could consist of both distributions of smaller grains (i.e., rubble piles) and of monolithic boulders.  相似文献   

9.
Data are presented for the 182 asteroids whose rotational properties are available in the literature. Plots are provided for the asteroid rotational frequency f and lightcurve amplitude Δm versus asteroid size; the latter is determined using standard methods if data are available but otherwise is estimated from asteroid albedos, selected depending on taxonomic type or orbital position. A linear least-squares fit to all the data shows that f increases with decreasing size, confirming McAdoo and Burns' (1973) result; this is demonstrated to be primarily caused by relatively more small non-C than C asteroids in our sample, coupled with a slower mean rotation rate for C asteroids (P ≈ 11 hr) than non-C asteroids (P ≈ 9 hr). In terms of the collisional theory of Harris (1979a), this means that the C's are less dense than the other minor planets. Any slight tendency for smaller asteroids to spin faster, even within a taxonomic type, could be due to selection effects; our data are not extensive enough to determine whether the very smallest (? 10-km diameter) spin especially fast. The minor planets of our survey become more irregular at smaller sizes, disputing the conclusions of Bowell (1977b), Degewij (1977), and Degewij et al. (1978), based on other, perhaps more complete, data; selection effects may account for this disagreement. Shapes do not appear to depend on taxonomic type. The dispersion of asteroid rotation rates from the mean is found to be in excellent agreement with a three-dimensional Maxwellian distribution, such as would be developed in a collisionally evolved system. The rotation axes, therefore, appear to be randomly oriented in space. Rotation pole positions are also tabulated and calculated to likely be constant in space over the extent of past observation. Observers are encouraged to measure the rotational properties of faint objects and asteroids of unusual taxonomic types, and to carry out long-time studies of asteroids which over short periods do not seem to vary.  相似文献   

10.
Calculations of the topography and shape of planetary bodies are presented for two sets of models. One set of models deals with the effects of static loading on bodies, taking into account strengths of materials, density, and size. The other set considers the effects of creep deformation on model bodies of differing composition, size and temperature. Application of these models to asteroids and satellites of the major planets indicates that model, even the largest asteroids could retain highly nonspherical shapes, and the four large satellites of Jupiter could sustain statically loaded topography on the order of 10 km. (2) If silicate asteroids have not been heated to near the melting temperature of silicates, initial topography should survive for at least 109 yr under creep deformation. Topography on an insulated icy asteroid will be rapidly reduced if it is of larger scale than the insulating layer, no matter what the thermal history. (3) Of the Galilean satellites of Jupiter, J1 and J2 should retain topography created on silicate surfaces since their formation (or since the surfaces were near the silicate melting temperature. If ice layers of any significant thickness exist, topography on a scale smaller than the layer's thickness will be reduced rapidly. (4) J4 and J3 probably fit an icy model throughout and topography of all scales may be reduced with relaxation times < 106yr. These satellites are thus likely to preserve only very recent features on their surfaces, in contrast to the other Galilean satellites. If melting has taken place since formation, these conclusions become even stronger. (5) Of the satellites of the other planets, only Titan appears likely to have undergone topographic reduction by creep, under the models presented. However, if ices other than water are present in large proportion on these satellites relaxation times for topography may be shorter than calculated from the water ice models.  相似文献   

11.
F. Marchis  M. Kaasalainen 《Icarus》2006,185(1):39-63
This paper presents results from a high spatial resolution survey of 33 main-belt asteroids with diameters >40 km using the Keck II Adaptive Optics (AO) facility. Five of these (45 Eugenia, 87 Sylvia, 107 Camilla, 121 Hermione, 130 Elektra) were confirmed to have satellite. Assuming the same albedo as the primary, these moonlets are relatively small (∼5% of the primary size) suggesting that they are fragments captured after a disruptive collision of a parent body or captured ejecta due to an impact. For each asteroid, we have estimated the minimum size of a moonlet that can positively detected within the Hill sphere of the system by estimating and modeling a 2-σ detection profile: in average on the data set, a moonlet located at 2/100×RHill (1/4×RHill) with a diameter larger than 6 km (4 km) would have been unambiguously seen. The apparent size and shape of each asteroid was estimated after deconvolution using a new algorithm called AIDA. The mean diameter for the majority of asteroids is in good agreement with IRAS radiometric measurements, though for asteroids with a D<200 km, it is underestimated on average by 6-8%. Most asteroids had a size ratio that was very close to those determined by lightcurve measurements. One observation of 104 Klymene suggests it has a bifurcated shape. The bi-lobed shape of 121 Hermione described in Marchis et al. [Marchis, F., Hestroffer, D., Descamps, P., Berthier, J., Laver, C., de Pater, I., 2005c. Icarus 178, 450-464] was confirmed after deconvolution. The ratio of contact binaries in our survey, which is limited to asteroids larger than 40 km, is surprisingly high (∼6%), suggesting that a non-single configuration is common in the main-belt. Several asteroids have been analyzed with lightcurve inversions. We compared lightcurve inversion models for plane-of-sky predictions with the observed images (9 Metis, 52 Europa, 87 Sylvia, 130 Elektra, 192 Nausikaa, and 423 Diotima, 511 Davida). The AO images allowed us to determine a unique photometric mirror pole solution, which is normally ambiguous for asteroids moving close to the plane of the ecliptic (e.g., 192 Nausikaa and 52 Europa). The photometric inversion models agree well with the AO images, thus confirming the validity of both the lightcurve inversion method and the AO image reduction technique.  相似文献   

12.
Jack Drummond  Jerry Nelson 《Icarus》2009,202(1):147-159
Five main belt asteroids, 2 Pallas, 129 Antigone, 409 Aspasia, 532 Herculina, and 704 Interamnia were imaged with the adaptive optics system on the 10 m Keck-II telescope in the near infrared on one night, August 16, 2006. The three axis dimensions and rotational poles were determined for Pallas, Antigone, Aspasia, and Interamnia, from their changing apparent sizes and shapes as measured with parametric blind deconvolution. The rotational pole found for Interamnia is much different from all previous work, including our own at Lick Observatory the previous month. Although images of Herculina were obtained at only two rotational phases, its rotation appears to be opposite to that predicted from the lightcurve inversion model of M. Kaasalainen, J. Torppa, and J. Piironen [2002. Icarus 159, 369-395]. A search for satellites was made in all of the asteroid images, with negative results, but three trailing stars around Herculina (200 km diameter), down to 8.9 magnitudes fainter and between 1 and 115 asteroid radii (100 to 11,500 km) from the asteroid, establishes an upper limit of 3.3 km for any object with the same albedo near Herculina.  相似文献   

13.
A.W. Harris 《Icarus》1979,40(1):145-153
A model for the evolution of the mean rotation rate of asteroids arising from mutual collisions yields reasonable agreement with observed rotation rates. The mean rotation rate of large asteroids for which gravitational binding energy exceeds material strength should be constant with respect to size. Since collisional erosion of small asteroids is more rapid than collisional spin-up, the onset of increased mean rotation rate occurs at a considerably smaller radius than the size at which material strength begins to dominate gravitational binding energy. For strong igneous rock, increased rotation rates are not expected among bodies larger than a few kilometers. If there is a real trend toward more rapid rotation among asteroids of ≈1?km radius (Degewij and Gehrels, (1976). Bull. Amer. Astron. Soc.8, 459), then a substantial population of strong asteroids in that size range is implied by this model. The slower mean rotation rate of C-type asteroids than other types (paper I) implies a ratio of densities of ≈2:3 between those types, in the context of this model.  相似文献   

14.
The distribution of axial rotation velocities of near-Earth asteroids (NEAs) substantially differs from that of the Main-Belt asteroids by an excess of both quickly and slowly rotating objects. Among the possible causes of this difference is the influence of the solar radiation—the so-called YORP effect—that arises from the absorption of solar energy and its reemission in the thermal range by a rotating body of irregular shape. It is known that the magnitude of this effect depends on the asteroid size and the quantity of received solar energy (the insolation). Analysis of the observational data showed that the mean diameter of NEAs decreases from the middle of the distribution to the edges, i.e., the excess of both slowly (ω ≤ 2 rev/day) and quickly (ω = 8–11 rev/day) rotating objects is formed due to the asteroids with sizes smaller than those in the middle of the distribution, which agrees well with the influence of the YORP effect. Moreover, the dependence of the axial rotation velocity of NEAs on the relative insolation shows that, for the NEAs referred to, both excesses are found in orbits where, on average, they receive 8–10% more solar energy than the NEAs in the middle of the distribution. This result also agrees with the character of the influence of the YORP effect and can be considered as an additional argument in its support. Thus, the study showed that one can infer that the currently available observational data suggest the possible influence of the YORP effect on the axial rotation of the near-Earth asteroids having sizes of D ~ 2 km and less. This is the first attempt to find the influence of the YORP effect on the axial rotation of the NEA family as a whole.  相似文献   

15.
Our goal is to understand primary accretion of the first planetesimals. Some examples are seen today in the asteroid belt, providing the parent bodies for the primitive meteorites. The primitive meteorite record suggests that sizeable planetesimals formed over a period longer than a million years, each of which being composed entirely of an unusual, but homogeneous, mixture of millimeter-size particles. We sketch a scenario that might help explain how this occurred, in which primary accretion of 10-100 km size planetesimals proceeds directly, if sporadically, from aerodynamically-sorted millimeter-size particles (generically “chondrules”). These planetesimal sizes are in general agreement with the currently observed asteroid mass peak near 100 km diameter, which has been identified as a “fossil” property of the pre-erosion, pre-depletion population. We extend our primary accretion theory to make predictions for outer Solar System planetesimals, which may also have a preferred size in the 100 km diameter range. We estimate formation rates of planetesimals and explore parameter space to assess the conditions needed to match estimates of both asteroid and Kuiper Belt Object (KBO) formation rates. For parameters that satisfy observed mass accretion rates of Myr-old protoplanetary nebulae, the scenario is roughly consistent with not only the “fossil” sizes of the asteroids, and their estimated production rates, but also with the observed spread in formation ages of chondrules in a given chondrite, and with a tolerably small radial diffusive mixing during this time between formation and accretion. As previously noted, the model naturally helps explain the peculiar size distribution of chondrules within such objects. The optimum range of parameters, however, represents a higher gas density and fractional abundance of solids, and a smaller difference between Keplerian and pressure-supported orbital velocities, than “canonical” models of the solar nebula. We discuss several potential explanations for these differences. The scenario also produces 10-100 km diameter primary KBOs, and also requires an enhanced abundance of solids to match the mass production rate estimates for KBOs (and presumably the planetesimal precursors of the ice giants themselves). We discuss the advantages and plausibility of the scenario, outstanding issues, and future directions of research.  相似文献   

16.
The observed albedo distributions in asteroid families as well as numberical calculations suggest that the spatial separation of bright and dark asteroids can be caused by some nongravitational mechanism acting in the solar system. For main-belt asteroids of size 10–50 km, the separation rate can be roughly estimated at 1 AU per 108 yr. The physical mechanism of this effect requires further investigation.  相似文献   

17.
D. Polishook  N. Brosch 《Icarus》2009,199(2):319-332
Photometry results of 32 asteroids are reported from only seven observing nights on only seven fields, consisting of 34.11 cumulative hours of observations. The data were obtained with a wide-field CCD (40.5×27.3) mounted on a small, 46-cm telescope at the Wise Observatory. The fields are located within ±1.5° from the ecliptic plane and include a region within the main asteroid belt. The observed fields show a projected density of ∼23.7 asteroids per square degree to the limit of our observations. 13 of the lightcurves were successfully analyzed to derive the asteroids' spin periods. These range from 2.37 up to 20.2 h with a median value of 3.7 h. 11 of these objects have diameters in order of two kilometers and less, a size range that until recently has not been photometrically studied. The results obtained during this short observing run emphasize the efficiency of wide-field CCD photometry of asteroids, which is necessary to improve spin statistics and understand spin evolution processes. We added our derived spin periods to data from the literature and compared the spin rate distributions of small main belt asteroids (5>D>0.15 km) with that of bigger asteroids and of similar-sized NEAs. We found that the small MBAs do not show the clear Maxwellian-shaped distribution as large asteroids do; rather they have a spin rate distribution similar to that of NEAs. This implies that non-Maxwellian spin rate distribution is controlled by the asteroids' sizes rather than their locations.  相似文献   

18.
The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens &38; Harris, it is shown that a recoil velocity of 1 cm s−1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g , the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.  相似文献   

19.
David Morrison 《Icarus》1977,31(2):185-220
The radiometric method of determining diameters of asteroids is reviewed, and a synthesis of radiometric and polarimetric measurements of the diameters and geometric albedos of a total of 187 asteroids is presented. All asteroids with diameters greater than 250 km are identified, and statistical studies can be carried out of the size distributions of different albedo classes down to 80-km diameter for the entire main asteroid belt (2.0–3.5 AU). The distribution of albedos is strongly bimodal, with mean albedos for the C and S groups of 0.035 and 0.15, respectively. The C asteroids outnumber the S at all sizes and all values of semi-major axis, increasing from a little over half the population inside 2.5 AU to more than 95% beyond 3.0 AU; for all objects with D > 70 km, the ratio C/(C+S) is 0.88 ± 0.04. More than half of all asteroids in this size range have a > 3.0 AU. The M asteroids constitute about 5% of the population for a < 3.0 AU, but no members of of this class have been identified in the outer belt. There are no significant differences between the distributions of C, S, and M asteroids for the largest asteroids (D > 200 km) and for those of intermediate size (200–270 km). The total mass in the belt, down to 70-km size, but excluding Ceres, is about 2 × 1024 g. Evidence is presented that several large asteroids rotate in a prograde sense, and that a real difference existsbetween the bulk densities of Ceres and Vesta.  相似文献   

20.
《Icarus》1987,70(2):257-263
A CCD-imaging survey was made for satellites of minor planets at distances of about 0.1 to 7 arcmin from 1 Ceres, 2 Pallas, 4 Vesta, 6 Hebe, 7 Iris, 8 Flora, 15 Eunomia, 29 Amphitrite, 41 Daphne, and 44 Nysa, with cursory inspection of 192 Nausikaa. Satellites larger than 3 km were not found in this work, nor in previous photographic surveys. Not finding them appears to be consistent with theoretical studies of collisions in the asteroid belt by several authors. The satellites would have to be larger than at least 30 km to be collisionally stable. Tidal effects would lead to synchronous rotation and therefore long periods of rotation (several days), which are not generally observed. Taking tidal stability into account, we conclude that the only possible satellites for main-belt asteroids, with stability over eons, are near-contact binaries. The only other rare possibility for a satellite might be a piece of debris from a recent collision, and it would now be chaotic and collisionally unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号