首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   

2.
In situ measurements of the Venus atmosphere, made by the entry probes Venera 4, 5, 6, and 7, and data from the Mariner 5 flyby, have provided essentially new and reliable information and have powerfully contributed to our understanding of the nearest planet. The abundances of the principal atmospheric constituents and the temperature and pressure profiles down to the Venus surface were obtained for the first time. It was shown that the atmosphere is composed primarily of CO2 and that N2 (if any) and H2O are relatively minor admixtures. In the region of the Venera 7 landing, the temperature and pressure at the Venus surface were established as equal to 747 ± 20°K and 90 ± 15 kgcm−2. Space vehicles have also provided limited but quite important information on the physical properties of the Venus upper atmosphere and ionosphere, and on the interaction of the planet with the interplanetary environment. The main characteristics of the Venus atmosphere are discussed here with emphasis on the Venera results, including instrumentation, data processing, and altitude profiles.  相似文献   

3.
The role of SO2 in the chemistry of the clouds of Venus has been investigated by deducing its mixing ratio profile in the atmosphere through millimeter wavelength interferometric measurements of the planet's limb darkening. The first zero crossing of the Venus visibility function was measured to be β0 = 0.6221 ± 0.0007 at a wavelength of 3.4 mm using a reference radius for Venus of 6100 km. This measurement constrains the amount of limb darkening and shows that the high concentrations of SO2 found in the lower atmosphere do not persist above an altitude of 42 km. Thus, a sink for SO2 exists below the level of the lowest cloud deck.  相似文献   

4.
Computations of the equivalent widths of absorption lines as a function of planetary phase angle are made for a homogeneous cloud with particles having the properties (shape, refractive index, and size distribution) deduced from polarimetry of Venus. The computed equivalent widths show an “inverse phase effect” comparable to that which is observed for CO2 lines on Venus. This result verifies a recent suggestion of Regas et al. that the existence of an inverse phase effect does not by itself imply the presence of multiple layers of scattering particles in the atmosphere of Venus.  相似文献   

5.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

6.
Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO2 and H2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO2, quickly removing it and preventing it from having a significant greenhouse effect.  相似文献   

7.
Using the SPICAV-UV spectrometer aboard Venus Express in nadir mode, we were able to derive spectral radiance factors in the middle atmosphere of Venus in the 170-320 nm range at a spectral resolution of R ? 200 during 2006 and 2007 in the northern hemisphere. By comparison with a radiative transfer model of the upper atmosphere of Venus, we could derive column abundance above the visible cloud top for SO2 using its spectral absorption bands near 280 and 220 nm. SO2 column densities show large temporal and spatial variations on a horizontal scale of a few hundred kilometers. Typical SO2 column densities at low latitudes (up to 50°N) were found between 5 and 50 μm-atm, whereas in the northern polar region SO2 content was usually below 5 μm-atm. The observed latitudinal variations follow closely the cloud top altitude derived by SPICAV-IR and are thought to be of dynamical origin. Also, a sudden increase of SO2 column density in the whole northern hemisphere has been observed in early 2007, possibly related to a convective episode advecting some deep SO2 into the upper atmosphere.  相似文献   

8.
High-resolution spectra of Venus and Mars at the NO fundamental band at 5.3 μm with resolving power ν/δν=76,000 were acquired using the TEXES spectrograph at NASA IRTF on Mauna Kea, Hawaii. The observed spectrum of Venus covered three NO lines of the P-branch. One of the lines is strongly contaminated, and the other two lines reveal NO in the lower atmosphere at a detection level of 9 sigma. A simple photochemical model for NO and N at 50-112 km was coupled with a radiative transfer code to simulate the observed equivalent widths of the NO and some CO2 lines. The derived NO mixing ratio is 5.5±1.5 ppb below 60 km and its flux is . Predissociation of NO at the (0-0) 191 nm and (1-0) 183 nm bands of the δ-system and the reaction with N are the only important loss processes for NO in the lower atmosphere of Venus. The photochemical impact of the measured NO abundance is significant and should be taken into account in photochemical modeling of the Venus atmosphere. Lightning is the only known source of NO in the lower atmosphere of Venus, and the detection of NO is a convincing and independent proof of lightning on Venus. The required flux of NO is corrected for the production of NO and N by the cosmic ray ionization and corresponds to the lightning energy deposition of . For a flash energy on Venus similar to that on the Earth (∼109 J), the global flashing rate is ∼90 s−1 and ∼6 km−2 y−1 which is in reasonable agreement with the existing optical observations. The observed spectrum of Mars covered three NO lines of the R-branch. Two of these lines are contaminated by CO2 lines, and the line at 1900.076 cm−1 is clean and shows some excess over the continuum. Some photochemical reactions may result in a significant excitation of NO (v=1) in the lowest 20 km on Mars. However, quenching of NO (v=1) by CO2 is very effective below 40 km. Excitation of NO (v=1) in the collisions with atomic oxygen is weak because of the low temperature in the martian atmosphere, and we do not see any explanation of a possible emission of NO at 5.3 μm. Therefore the data are treated as the lack of absorption with a 2 sigma upper limit of 1.7 ppb to the NO abundance in the lower atmosphere of Mars. This limit is above the predictions of photochemical models by a factor of 3.  相似文献   

9.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

10.
Sulfur dioxide has a strong and complex rotational spectrum in the microwave and far infrared regions. The microwave absorption due to SO2 in a CO2 mixture is calculated for conditions applicable to the Venus atmosphere. It is shown that at the concentrations detected by Pioneer-Venus in situ measurements, SO2 may be expected to contribute significantly to the microwave opacity of the Venus atmosphere. In particular, SO2 might provide the major source of opacity in the atmospheric region immediately below the main sulfuric acid cloud deck. The spectrum is largely nonresonant at the pressures where SO2 is expected to occur, however.  相似文献   

11.
Ralph Kahn 《Icarus》1982,49(1):71-85
We show how crater size-density counts may be used to help constrain the history of the Venus atmosphere, based on the predictions of simple but reasonable models for crater production, surface erosion, and the effects of atmospheric drag and breakup on incident meteors in the Venus atmosphere. If the atmosphere is old, we may also be able to determine the importance of breakup as a mechanism for destroying incident meteors in a dense fluid. In particular, if the atmosphere is young, the old (uneroded) surfaces will have crater densities upward of 10?4 km?2 and a ratio of small (4 km) craters to large (128 km) craters near 103. If the atmosphere is old and the breakup mechanism is dominant, absolute crater densities on Venus surfaces will be diminished by several orders of magnitude relative to the young atmosphere case. If atmospheric drag is dominant and the atmosphere is old, the absolute crater density will be lowered by perhaps an order of magnitude relative to the young atmosphere case, and the ratio of small to large craters will be reduced to a value near 101.5 according to the models. The comparison of crater populations on young, as well as old, surfaces on Venus can help in distinguishing the young and old atmosphere scenarios, especially since the situation may be complicated by currently undetermined erosional and tectonic processes. Once a large fraction of Venus surface has been imaged at kilometer resolution, as the VOIR project promises to do, it could be possible to make an early determination of the age of the Venus atmosphere.  相似文献   

12.
We present submillimeter observations of 12CO J=3-2 and 2-1, and 13CO J=2-1 lines of the Venusian mesosphere and lower thermosphere with the Heinrich Hertz Submillimeter Telescope (HHSMT) taken around the second MESSENGER flyby of Venus on 5 June 2007. The observations cover a range of Venus solar elongations with different fractional disk illuminations. Preliminary results like temperature and CO abundance profiles are presented.These data are part of a coordinated observational campaign in support of the ESA Venus Express mission. Furthermore, this study attempts to contribute to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms for planetary atmospheres, and to a more thorough understanding of the global patters of circulation of the Venusian atmosphere.  相似文献   

13.
G.S. Golitsyn 《Icarus》1984,60(2):289-306
A brief survey is given of the observational data on wind speeds in the atmosphere of Venus, as well as results of the theory of similitude and of a scale analysis for estimation of the wind speeds and temperature contrasts. It is shown that, in the lower portion of the atmosphere, containing roughly half of the mass, the first method produces results which are in somewhat better agreement with the measurements. Measurements of the wind distribution in the atmosphere are discussed. It is shown that, in the slowly rotating atmosphere of Venus, we should expect the Solberg mechanism of inertial instability of the circulation to be effective with respect to axisymmetrical perturbations. The numerical experiments of G.P. Williams (1968, J. Atmos. Sci., 25, 34–1045; 1970, Geophys. Fluid Dyn., 1, 357–369) indicate that in this case the circulation in the meridional plane can be broken down into a series of forward and reverse cells. The existence of such cells can serve to preserve the angular momentum of the planet with its atmosphere—the total momentum of the atmospheric frictional forces against the surface should on the average equal zero. This supports the hypothesis of G. Schubert et al. (1980, J. Geophys. Res., 85, 8007–8025) concerning the multicellular structure of the meridional circulation. Data are analyzed with regard to the time variability of the circulation. If the angular momentum of Venus′ atmosphere can change by 30% (which is not excluded by the presently available data; in Earth's atmosphere seasonal variations of the momentum reach 50%), then the relative variations in the length of a Venusian day will attain 10?3, i.e., several hours. The surface boundary layer is considered. It is shown that, due to the small transparency of the atmosphere to thermal radiation, heat transfer between the surface and the atmosphere should basically take place by turbulent heat exchange. The basic parameters of the dynamic and thermal regimes of this layer are estimated. Questions of light refraction in the boundary layer are discussed. A strict theory of refraction, developed for these conditions, confirms the preliminary rough estimates of V.I. Moroz (1976, Cosmic Res., 14, No. 5, 691–692; Space Sci. Rev., 25, 3–127), viz, that the horizon is visible on the panorama at a distance of order 100m, due to a relatively sharp negative gradient near the surface.  相似文献   

14.
An observational program to study variations of the vertical distribution of CO in the Venus atmosphere is presented. Measurements of the J = 0 → 1 absorption line at 2.6 mm wavelength are reported for two phase angles in 1977, one near eastern elongation (Feb.) and the other near inferior conjunction (Apr.). The two spectra are significantly different, with the April absorption line being narrower and deeper. The results of numerical inversion calculations show that the CO mixing ratio increases a factor of ~ 100 between 78 and 100 km and that the CO abundance above ~ 100 km is greatest on the night-side hemisphere. These conclusions are in qualitative agreement with theoretical models. In addition to the CO observations, a search for other molecules was made to provide further information on the composition of the Venus middle atmosphere. The J = 0 → 1 transition of 13CO was detected and upper limits were derived for nine other molecules.  相似文献   

15.
We present results of a simple two-dimensional model investigating the observable effects that convective motions and gravity waves can have on the condensational Venus cloud. Gravity waves have been observed in the Venus atmosphere in the form of temperature scintillations in the Magellan and Pioneer Venus occultation data. Multiple in situ probes and long-duration remote observations indicate the presence of convective motions in the Venus clouds. Dynamical studies by others have suggested that gravity waves can exist in the stable regions of the Venus atmosphere above the middle clouds and beneath the middle clouds, and likely are triggered by flow past sub-cloud plumes caused by convective overshooting. We find that a simplified treatment of convective kinematics generates variation in the Venus condensational cloud consistent with the observed variability of optical depth and brightness temperature. Specifically, we find that the downdraft regions in our simulated convective cell exhibit a decrease in cloud optical depth of around Δτ∼10. The brightness temperature ranges from about 460 K in the downdraft regions of the simulated convective cells, to about 400 K in the simulated updrafts. We also find that gravity waves launched by obstacles (such as overshooting convective plumes) near the cloud base exhibit horizontal wavelengths comparable to the separation between convective cells, and generate variations in brightness temperature that should be observable by instruments such as VIRTIS on Venus Express. However, a more robust treatment of the atmospheric dynamics is needed to address adequately these interactions between the clouds and the mesoscale dynamics.  相似文献   

16.
The launch of the Soviet space probes Vega 1 and Vega 2 to explore Venus, including its atmosphere, and flyby Halley??s comet, a rare guest in the inner Solar System, added a vivid page to the history of space exploration. This paper is dedicated to Designer General Vyacheslav M. Kovtunenko.  相似文献   

17.
The results obtained by two extreme ultra violet (e.u.v.) spectrophotometers flown near Venus on VENERA 11 and VENERA 12 in December 1978 are presented. Detectors were placed at discrete wavelength positions to measure e.u.v. emissions from the upper atmosphere of Venus while the spacecraft were drifting on their fly-by orbits. The emissions of HI 121.6 nm (Ly-α), HeI 58.4 nm, and OI 130.4 nm were measured with unprecedented sensitivity and spatial resolution. An OI signal of 500 Rayleigh (R) measured outside the disc suggested the existence of a large bulge of oxygen atoms. The e.u.v. emissions of two ionic species. OII 83.4 nm and HeII 30.4 nm, were measured for the first time in the atmosphere of Venus. The zero order detector of VENERA 12 indicated the presence of a very intense e.u.v. emission (28 kR) lying between the monitored wavelengths. This emission, which was only 3 kR for VENERA 11, is likely to be associated with the solar wind-ionosphere interaction.An attempt to measure ArI and NeI resonance emissions failed.The Lyman alpha (Ly-α) interplanetary background was 4 to 5 times larger than expected, suggestive of a very intense solar flux or an increase of the interplanetary density. The distribution of hydrogen indicates two populations with temperatures of 400 and 700 K.  相似文献   

18.
We have computed the physical parameters for the Venus atmosphere between 0–64 km altitude by using Vega measurements. The proposed model can be used in order to study the structure of Venus atmosphere and its chemical comoposition between 60–64 km, where an inversion in temperature profiles has been measured by Vega.  相似文献   

19.
《Planetary and Space Science》2007,55(12):1636-1652
Venus Express is the first European mission to planet Venus. The mission aims at a comprehensive investigation of Venus atmosphere and plasma environment and will address some important aspects of the surface physics from orbit. In particular, Venus Express will focus on the structure, composition, and dynamics of the Venus atmosphere, escape processes and interaction of the atmosphere with the solar wind and so to provide answers to the many questions that still remain unanswered in these fields. Venus Express will enable a breakthrough in Venus science after a long period of silence since the period of intense exploration in the 1970s and the 1980s.The payload consists of seven instruments. Five of them were inherited from the Mars Express and Rosetta projects while two instruments were designed and built specifically for Venus Express. The suite of spectrometers and imaging instruments, together with the radio-science experiment, and the plasma package make up an optimised payload well capable of addressing the mission goals to sufficient depth. Several of the instruments will make specific use of the spectral windows at infrared wavelengths in order to study the atmosphere in three dimensions. The spacecraft is based on the Mars Express design with minor modifications mainly needed to cope with the thermal environment around Venus, and so a very cost-effective mission has been realised in an exceptionally short time.The spacecraft was launched on 9 November 2005 from Baikonur, Kazakhstan, by a Russian Soyuz-Fregat launcher and arrived at Venus on 11 April 2006. Venus Express will carry out observations of the planet from a highly elliptic polar orbit with a 24-h period. In 3 Earth years (4 Venus sidereal days) of operations, it will return about 2 Tbit of scientific data.Telecommunications with the Earth is performed by the new ESA ground station in Cebreros, Spain, while a nearly identical ground station in New Norcia, Australia, supports the radio-science investigations.  相似文献   

20.
The finding of36A excess on Venus by the mass-spectroscopic measurement of the Venus Pioneer appears to endorse the more rapid accretion theory of Venus than the Earth and the secondary origin of the terrestrial atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号