首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a program conducted to isolate AGK3 stars with large proper motions, it has been found that more than one hundred stars seem to be affected by large errors in their published proper motions. For some of those objects south of +25 degrees, new proper motions are being obtained using, as first-epoch positions, the published material of the Astrographic Catalogue. Second-epoch positions are derived from new plates taken with the Yale Southern Observatory double astrograph.  相似文献   

2.
The UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS) is the first of a new generation of infrared surveys. Here, we combine the data from two UKIDSS components, the Large Area Survey (LAS) and the Galactic Cluster Survey (GCS), with Two-Micron All-Sky Survey (2MASS) data to produce an infrared proper motion survey for low-mass stars and brown dwarfs. In total, we detect 267 low-mass stars and brown dwarfs with significant proper motions. We recover all 10 known single L dwarfs and the one known T dwarf above the 2MASS detection limit in our LAS survey area and identify eight additional new candidate L dwarfs. We also find one new candidate L dwarf in our GCS sample. Our sample also contains objects from 11 potential common proper motion binaries. Finally, we test our proper motions and find that while the LAS objects have proper motions consistent with absolute proper motions, the GCS stars may have proper motions which are significantly underestimated. This is possibly due to the bulk motion of some of the local astrometric reference stars used in the proper motion determination.  相似文献   

3.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

4.
Apparent acceleration of proper motion is one of the observable manifestations of orbital motion in binary stars. Owing to the increasing accuracy of astrometric measurements, it may also be a method to detect binarity of stars. This paper presents some analytical expressions for the effects of binary motion on proper motions when the orbital period is at least several times the span of observations. We estimate orbit dimensions and distances at which low‐mass companions and planets may be detected around main‐sequence stars, using preliminary estimates of precision for the AMEX, GAIA and SIM space missions.  相似文献   

5.
There exist many comets with near-parabolic orbits in the Solar System. Among various theories proposed to explain their origin, the Oort cloud hypothesis seems to be the most reasonable (Oort, 1950). The theory assumes that there is a cometary cloud at a distance 103 – 105 AU from the Sun and that perturbing forces from planets or stars make orbits of some of these comets become of near-parabolic type. Concerning the evolution of these orbits under planetary perturbations, we can raise the question: Will they stay in the Solar System forever or will they escape from it? This is an attractive dynamical problem. If we go ahead by directly solving the dynamical differential equations, we may encounter the difficulty of long-time computation. For the orbits of these comets are near-parabolic and their periods are too long to study on their long-term evolution. With mapping approaches the difficulty will be overcome. In another aspect, the study of this model has special meaning for chaotic dynamics. We know that in the neighbourhood of any separatrix i.e. the trajectory with zero frequency of the unperturbed motion of an Hamiltonian system, some chaotic motions have to be expected. Actually, the simplest example of separatrix is the parabolic trajectory of the two body problem which separates the bounded and unbounded motion. From this point of view, the dynamical study on near-parabolic motion is very important. Petrosky's elegant but more abstract deduction gives a Kepler mapping which describes the dynamics of the cometary motion (Petrosky, 1988). In this paper we derive a similar mapping directly and discuss its dynamical characters.  相似文献   

6.
利用上海天文台的照相底片资料,确定了疏散星团NGC6530天区364颗恒星的自行和成员概率,并对有关自行测定的方法、结果和精度等问题作了较为详细的介绍和讨论。使用的底片历元差为87年,全部恒星自行中误差的均方根值为1.09mas/a。  相似文献   

7.
傅燕宁  孙义燧 《天文学报》1997,38(2):119-128
本文研究振动盘中恒星的运动性质.所采用的势模型为它由一种具简单径向振动模态的Kuzmin盘和一种对数晕共同产生.得到的主要结论是:(1)恒星存在稳定且有序的近圆轨道;(2)盘振动对角动量较小的恒星及远离近圆轨道的恒星影响较大;(3)盘中大部分恒星的运动是有序的;(4)远离近圆轨道的恒星一般作混沌运动,并且最终可能逃逸,但在一个Hubble时间内实际逃逸的恒星比例较小;(5)盘振动可能是振动Kurmin盘中某些星团形成并长期维持的机制之一,盘振动幅度越大,盘中星团数目可能越多;在同一个星系盘中,角动量越大的星团数目可能越少.  相似文献   

8.
We solve the problem on a kinematic analysis of the three-dimensional velocity field of stars from zonal catalogues, i.e., catalogues in which the stars are presented at all right ascensions in some declination zones. We have constructed a system of vector spherical harmonics with the properties of completeness and orthogonality for a chosen declination zone. We suggest a method that allows the Ogorodnikov-Milne model parameters in the Galactic coordinate system to be estimated by analyzing the proper motions and radial velocities of stars in the equatorial coordinate system. The vector spherical harmonics are shown to have the following advantages over the standard approach based on a direct leastsquares estimation of the parameters for a specific model. First, in contrast to the standard approach, the new method can reveal all systematic components of the velocity field irrespective of a particular model. Second, it allows one to get rid of the correlation between the sought-for parameters, which presents a serious problem for the conventional method in the case of zonal catalogues. Third, the method of vector spherical harmonics allows the kinematic parameters to be estimated at least by two techniques. Comparison of these two solutions makes it possible to test the standard kinematic model for compatibility with the observational data. The developed method has been tested on the basis of numerical experiments and applied for a kinematic analysis of the proper motions of Tycho-2 stars in the southern hemisphere for which the parallaxes can be estimated using data from the Tycho-2 Spectral Type Catalogue.  相似文献   

9.
This review is limited to solar-type stars (late-F to early-K main sequence stars) and to recent developments in the study of the evolution of angular momentum in those stars. Observations of rotation in young clusters are discussed, together with the models that have been put forth to account for what is seen. One key question is whether or not the convective envelopes of solar-type stars decouple from the radiative cores when the stars near the Zero-Age Main Sequence. That question cannot yet be answered, but forthcoming observations are likely to address the issue. Another significant open question is the degree to which any one cluster of stars is typical of all stars at that age, and that too is near to being resolved as we reach deeper into the Galaxy at high spectroscopic resolution. Finally, some general properties of activity in solar-type stars are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We use a composite galaxy model consisting of a disk-halo, bulge, nucleus and dark-halo components in order to investigate the motion of stars in ther-z plane. It is observed that high angular momentum stars move in regular orbits. The majority of orbits are box orbits. There are also banana-like orbits. For a given value of energy, only a fraction of the low angular momentum stars — those going near the nucleus — show chaotic motion while the rest move in regular orbits. Again one observes the above two kinds of orbits. In addition to the above one can also see orbits with the characteristics of the 2/3 and 3/4 resonance. It is also shown that, in the absence of the bulge component, the area of chaotic motion in the surface of section increases, significantly. This suggests that a larger number of low angular momentum stars are in chaotic orbits in galaxies with massive nuclei and no bulge components.  相似文献   

11.
N-body simulations of the capture of a small disc galaxy by a massive elliptical primary show that tidal forces destroy the inner part of the disc in a brief episode at some critical distance from the centre of the primary. We suggest that this phase may be characterised by chaotic motions in the disc material causing a burst of star formation. Such an event would offer a natural explanation of the colour differences between stars in shells around an elliptical galaxy and those in the galaxy itself. We report a study of orbits in the disc prior to and during its disruption, designed to test this hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the “amplitude of rotational brightness modulation (ARM)—rotation period” diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.  相似文献   

13.
空间时代地面光学天体测量的意义   总被引:1,自引:1,他引:0  
从基本天体测量的主要任务出发,介绍了绝对测定和相对测量之间的区别和不同用途,并针对河外射电源参考架和依巴谷参考架的高精度的不足之处,说明了地面光学天体测量的长期性和灵活性等优势正是克服这些不足之处所必须的,但这不应是传统的已有精度下的地面光学天体测量,而应是与空间测量精度可比的要求下的地面测量,两者配合起来,将能促进本学科和相关学科的发展。  相似文献   

14.
The mass of central bodies in a number of Milky-Way globular clusters is estimated based on the stellar radial-velocity dispersion data. It is assumed that stars located close to the center of the cluster (i.e., to the black hole) rotate about it, have masses on the order of the solar mass, and that the mass of the gravitating center is greater by a factor of 1000. The radial velocities of stars in the vicinity of cluster centers are analyzed for two hypothetical extreme cases: (1) ordered orbital motion of stars about the gravitating center and (2) chaotic orbital motions. The masses inferred for most of the clusters (102–104 M ) correspond to intermediate-mass black holes. Another important result of this study consists in the determination of the quantity l, the characteristic scale length of the additional spatial dimension. Given the age and mass of the globular cluster NGC 6397 we estimate l to be between 0.02 and 0.14 mm.  相似文献   

15.
Proper motions of the stars of the Astrographic Catalogue are being derived, using the Hubble Space Telecope Guide Star Catalogue as second epoch. Results on the San Fernando and Cordoba AC zones are presented. Identification with GSC stars (i.e. determination of proper motion) was successful for 97 percent of all AC stars. Comparison of the proper motions thus derived with those of Preliminary PPM South shows that the accuracy is about 0.8 to 0.9 arcsec per century. Thus we can derive proper motions for about 4 million stars, with an accuracy higher than that of the SAO Catalogue.  相似文献   

16.
Accurate two-colour photometry and proper motions of 7096 young X-ray stars in the ROSAT All-Sky Survey Bright Star Catalogue, version 1RXS, are extracted from the Tycho-2 Catalogue. The sample is dominated by red main-sequence and possibly pre-main-sequence stars. On a global proper motion convergence map, two features are very prominent: the nearby section of the Gould Belt and the Hyades convergent point. The appearance of the Gould Belt feature with its peak at ( l =2443, b =−126) is quite similar to that of Hipparcos OB stars. When only stars with proper motions drawing close to that point are selected, strong concentrations of stars in the direction of the Sco–Cen complex are found. Another concentration, not corresponding to any known OB association, is detected between the position of the Lower Centaurus Crux and Vela OB2 associations. It is a new young moving group located in Carina and Vela, and a near extension of the Sco–Cen complex. Contrary to the classical Gould Belt OB associations, the Carina–Vela moving group has a considerable geometric depth, the closest members being as near as 30 pc from the Sun. IC 2391, one of the youngest and closest open clusters on the sky, is a part of the Carina–Vela moving group. The Carina–Vela moving group does not link the Sco–Cen complex with the Vela OB associations, because the latter is much more distant than the outer limit of the sample. It is more likely that the young late-type population of the Scorpio–Centaurus–Carina moving group stretches towards the Sun and possibly beyond it.  相似文献   

17.
Here is a selection of applications of what is now called theory of dynamical systems in galactic dynamics and N-body systems. The study of chaotic motions in potentials used as a model for elliptical galaxies is a first example of these applications. The interest in this problem stems from the fact that there are now many theoretical and observational evidences that the overall potentials of galaxies are indeed non-integrable. There are classes of objects, for example small and intermediate luminosity elliptical galaxies, for which the presence of the famous third integral is not necessary or others in which we observe peculiarities in their photometry or kinematics. We address here some of these issues and their implications in modifying our current understanding of the structure and evolution of galaxies.More in general, there is the natural question of how the systems we see have settled to their present status and what would happen if some external cause perturbs it. This issue is related to the question of the stochasticity involved in the general N-body dynamics, especially when N is very large. An N-body dynamical system is definitely chaotic, as shown by several numerical investigations, at least for N not very large. However, this statement must be reconciled with the picture of non-collisional equilibrium of big systems. The second part of this review presents a survey of numerical experiments and an interpretation of the results obtained using standard chaoticity indicators.  相似文献   

18.
During the past 100 years the fundamental system has developed from a small list of 623 bright stars to one of 1535 stars. The compilation of the next fundamental catalog, the FK5, will involve the addition of some 3200 stars and will extend the system to magnitude 9.0. A number of criteria were used for selecting the 2000 stars in the seventh to ninth magnitude portion of the extension, the Faint Fundamentals. These criteria include distribution in magnitude and spectral type, quality of the observational histories, mean errors of the proper motions and distribution over the sky. These criteria have proven difficult to satisfy, especially at the faint end of the magnitude range and in the Southern Hemisphere.  相似文献   

19.
Astrometric CCD observations of 1123 stars with large proper motions (μ > 300 mas yr−1) from the LSPM (I/298) catalog in the declination zone +30°–+70° have been carried out with the Pulkovo normal astrograph since 2006. The observational program includes mostly stars that previously have not entered into high-accuracy projects to determine the proper motions. Our studies are aimed at determining new proper motions of fast stars in the HCRF/UCAC3 system and searching for stars with invisible companions in the immediate Galactic neighborhoods of the Sun. Having analyzed about 10 000 CCD frames, we have obtained the equatorial coordinates of 414 program stars in the HCRF/UCAC3 system at an accuracy level of 10–50 mas and determined their new proper motions. To derive the proper motions, we have used the data from several star catalogs and surveys (M2000, CMC14, 2MASS, SDSS) as early epochs. The epoch differences range from 5 to 13 years (on average, about 10 years); the mean accuracy of the derived proper motions is 4–5 mas yr−1. For 70 stars, we have revealed significant differences between the derived proper motions and those from the LSPM and I/306A catalogs (these proper motions characterize the mean motion of the photocenter in 50 years or more). Apart from systematic errors, these differences can result from the existence of invisible components of the program stars.  相似文献   

20.
A new method for selecting stars in the Galactic bar based on 2MASS infrared photometry in combination with stellar proper motions from the Kharkiv XPM catalogue has been implemented. In accordance with this method, red clump and red giant branch stars are preselected on the color-magnitude diagram and their photometric distances are calculated. Since the stellar proper motions are indicators of a larger velocity dispersion toward the bar and the spiral arms compared to the stars with circular orbits, applying the constraints on the proper motions of the preselected stars that take into account the Galactic rotation has allowed the background stars to be eliminated. Based on a joint analysis of the velocities of the selected stars and their distribution on the Galactic plane, we have confidently identified the segment of the Galactic bar nearest to the Sun with an orientation of 20°–25° with respect to the Galactic center-Sun direction and a semimajor axis of no more than 3 kpc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号