首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Su-Xi-Chang area is one of the typical regions in China which suffers from severe land subsidence. Various field monitoring records were integrated to study the characteristics and mechanisms of land subsidence in this region. The development of the land subsidence in this region shows a tight spatial and temporal correlation with the groundwater pumping. Based on the analysis of the field data, it is found that the deformation patterns of the hydrogeologic units are greatly related to the hydrogeologic properties and groundwater level variations. Some have an elastic behavior, others may have an elastic–plastic rheology. Hence, a 3D finite element numerical model considering the rheological properties of the soil was developed to simulate the groundwater level and land subsidence. Both hydraulic conductivity and specific storage were expected to vary with the porosity during the process of consolidation. Multiscale finite element method (MsFEM) was applied to solve the model during the period from 1996 to 2004. After calibrating the model with the observed groundwater level and subsidence data, the parameters of the multi-layers system were estimated. The calibrated model outputs fit reasonably well with the observed data. Consequently the model can be applied to predict groundwater level and land subsidence in future pumping scenarios. The model predictive results show that land subsidence rate can be controlled and even rebound may occur after the implementation of the groundwater exploitation prohibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Su-Xi-Chang area and the city of Shanghai, located in the south of Yangtze Delta, China, has subsided due to groundwater overpumping. Because of the regional scale of the groundwater exploitation, cone of depression and land subsidence at present, Su-Xi-Chang area and Shanghai are treated as a single area for a land subsidence study, which could more clearly elaborate the relationships between the deformation features of hydrostratigraphic units and the different sites of the cone of depression. All hydrostratigraphic units in the study area were discussed throughout. Based on the field data, including data on compression of individual strata from groups of extensometers and groundwater levels from observation wells, the relationship between the deformation and the groundwater level was analyzed. The results indicate that the deformation features of the hydrogeologic units are greatly related to hydrogeologic properties and groundwater-level variations. An identical hydrogeologic unit may exhibit different deformation features in different locations such as along the periphery and in the center of the cone of depression. In addition, in the same location, a hydrogeologic unit also exhibits different features in different periods because of different groundwater level variations. The delay phenomenon of the sandy aquifer is not specific but occurs widely.  相似文献   

3.
The plain of Beijing city in China suffers severe land subsidence owing to groundwater overdraft. The maximum subsidence rate could reach 6 cm/year through the 2000s. An integrated subsidence-monitoring program was designed, including levelling survey, borehole extensometers and multilayer monitoring of groundwater level, with the aim to understand both hydrological and mechanical processes and to characterize the land subsidence. From multilayer compaction monitoring, the major compression layers were identified. The major strata contributing to compression deformation are the second (64.5–82.3 m) and third (102–117 m) aquitards, which contributed around 39 % of the total subsidence. Meanwhile, irrecoverable deformations were also observed in the second (82.3–102 m) and third (117–148 m) confined aquifers; they exhibit elasto-plastic mechanical behavior, which is attributed to the thin beds of silt or silty clay. Stress–strain analysis and oedometer tests were conducted to study the aquifer-system response to pumping and to estimate the specific storage of the major hydrogeologic units. The results reveal the creep behavior and elasto-plastic, visco-elasto-plastic mechanical behavior of the aquitards at different depths. The compressibility of the aquitards in the inelastic range is about one order of magnitude larger than for the elastic range.  相似文献   

4.
Su-Xi-Chang area and Shanghai City, located in the south of Yangtze Delta, China, has subsided due to groundwater overpumping. Because of the regional scale of the groundwater exploitation, cone of depression and land subsidence at present, Su-Xi-Chang area and Shanghai City are treated as a single area for land subsidence study to avoid the uncertainty of boundary condition due to the regionalism. The characteristics of aquifer system compaction are complex because of the difference in the types, compositions and structures of the soils that the hydrostratigraphic units are composed of, and in the histories of groundwater level change the hydrostratigraphic units have experienced. Considering the fact that different hydrostratigraphic units have different kinds of deformation and that an identical unit may also present different deformation characteristics, such as elasticity, elasto-plasticity, and visco-elasto-plasticity, at different sites of the cone of depression or in different periods, corresponding constitutive laws have been adopted. This avoids the shortcomings of the previous research that the same constitutive law was adopted in all the hydrostratigraphic units during the entire time period. A coupled flow and subsidence model, which includes a three-dimensional flow model with variable coefficients and a one-dimensional (vertical) subsidence model, is built according to the complicated hydrological condition in the region. The simulation model is calibrated using observed data, which include compression of individual strata from groups of extensometers and groundwater levels from observation wells from 1995 to 2002. The model reproduced that the primary subsidence layer in Shanghai shifts from the shallow aquitard to the fourth confined aquifer because of the groundwater yield variations and the change of exploitation aquifers. However the third aquitard was the primary subsidence layer in Su-Xi-Chang area and the compaction deformation of the sandy aquifers was remarkable. The simulation results could provide some reasonable advice about groundwater exploitation in the future.  相似文献   

5.
锡西澄南地区在苏锡常地区地面沉降研究中具有一定代表性,是地面沉降的典型地区之一。本文在已有的长期地下水水位、地面沉降监测资料的基础上,结合区域地质条件就全面禁采以来锡西澄南地区的地面沉降特征的诸多方面作进一步的探索分析。分析结果显示:目前锡西澄南地区出现南北沉降差异;差异特征与相应区域的地下水补给条件密切相关;北部Ⅱ承压层沉降为预防重点。  相似文献   

6.
Excessive groundwater withdrawal has caused severe land subsidence in the Su-Xi-Chang (SXC) area, China. The restriction and prohibition on groundwater pumping have been carried out since the late 1990s. Based on the latest updated field data, the changing pattern of groundwater level and the distribution of land subsidence are analyzed. The distribution of land subsidence in SXC is closely related to that of the cone of depression in the second confined aquifer in time and space. But land subsidence is not in synchronization with the changing groundwater level. Both aquitards and aquifers compacted continuously in the early period of groundwater level rising and behaved as creep materials. A series of laboratory tests were conducted on aquifer sands, which indicated that the creep deformation under virgin compression is much greater than that under recompression and unloading, and that the creep of sands decreases rapidly with the cycles of repeating load. The test results reveal the mechanism of sand creep under the condition of long-term groundwater pumpage. As a consequence of the restriction and prohibition on groundwater pumping, groundwater level has obviously recovered in the vast majority of the SXC area, and land subsidence has slowed down and even a little rebound has occurred in some sites in Suzhou and Changzhou. If the pumpage is strictly limited continuously, the groundwater level will not decline below the historical lowest value but fluctuate within a certain range. In such a case, land subsidence in SXC will no longer develop obviously.  相似文献   

7.
Land subsidence caused by groundwater exploitation in Suzhou City,China   总被引:10,自引:2,他引:10  
Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation in pumping rates on the basis of the spatial distribution of the thick mud layer could significantly reduce the ground settlement. Electronic Publication  相似文献   

8.
胡建平  隋兆显  陈杰 《江苏地质》2006,30(4):261-264
1995年以来,针对严重的区域性地面沉降和地裂缝灾害,苏锡常地区地下水资源保护和管理工作逐渐加强,特别是从2000年开始,江苏省政府分阶段实施限期禁止开采工作,首先在超采区实行地下水禁采,到2005年底,在苏锡常地区全面禁止开采地下水,全区地下水环境、地面沉降状况出现明显好转,地下水水位普遍回升,地面沉降速率逐渐减缓。根据近年来苏锡常地区地面沉降基岩标、分层标的系统监测资料,对地下水禁采后地质环境的效应特别是地面沉降的变化特征进行了初步分析、研究,并对该区今后地质环境保护工作提出了对策和建议。  相似文献   

9.
This article gives a general introduction to land subsidence with the prediction approaches due to withdrawal of groundwater in three subsided/subsiding regions in China: the deltaic plain of Yangtse River (YRDP), North China Plain (NCP), and Fenwei Plain (FP). On YRDP, Shanghai is the typical subsided/subsiding city; on NCP Tianjin is the typical subsided/subsiding city, and on FP Taiyuan is the typical subsided/subsiding city. The subsided area with subsidence over 200 mm on YRDP is about 10,000 km2 and the maximum subsided value reached 2.9 m at Shanghai; on NCP the subsided area reached 60,000 km2 with the maximum subsidence of 3.9 m at Tianjing; on FP the subsided area is relatively smaller than that on the other two plains and is about 1,135 km2 with maximum subsidence of 3.7 m at Taiyuan city. In order to protect the civil and industrial facilities, it is necessary to predict the future development of land subsidence based on present state. Many researchers proposed several approaches to predict the land subsidence due to groundwater withdrawal according to different geological conditions and groundwater withdrawal practice. This article classifies these approaches into five categories: (i) statistical methods; (ii) 1D numerical method; (iii) quasi-3D seepage model; (iv) 3D seepage model; (v) fully coupled 3D model. In China, the former four categories are presently employed in the prediction practice and their merits and demerits are discussed. According to the prediction practice, 3D seepage model is the best method presently.  相似文献   

10.
Land subsidence in Taiwan has increased rapidly over the past four decades, owing to heavy withdrawal of groundwater. Leveling surveys, layer compressions and groundwater level in individual layers were continuously monitored in the Choshui alluvial fan, western Taiwan. It was found that ground subsidence and layer compression were consistent with the variation of groundwater level. From multi-level compression monitoring, the layers with major compression deformation were identified. Clayey and sandy layers exhibited significant compression deformation. Conceptual models of compression behavior for clays and sands were studied based on the field data. The compression behavior of clays agreed with the Terzaghi consolidation theory. Notable, irrecoverable volumetric strains were also observed in sandy layers. They exhibited obvious elasto-plastic mechanical behavior. The high compressibility of the sand layer in the alluvial fan was attributed to the flaky sand grains in this geological region.  相似文献   

11.
苏锡常地区实例证明,沿用单一的取水许可制度已很难解决地下水资源超采及由此引发的地面沉降地质灾害问题,地下水资源管理目标应定位于地质环境保护前提下的科学适度开采。对苏北沿海盐城、大丰地面沉降区现行的地下水资源管理制度进行了探索性补充设计,重点探讨了地下水开采权交易模型和地下水资源动态规划机制,为该地区今后的地下水资源管理提供了思路。  相似文献   

12.
武健强  吴曙亮  闵望 《江苏地质》2014,38(2):319-323
苏锡常地区是长江三角洲平原地面沉降最为严重的地区之一,2000年以来,通过监测、勘查研究结合地下水限采禁采管理,有效地控制了灾害的进一步蔓延。以多年的监测研究工作(水准测量、GPS测量、D-InSAR测量)为基础,通过对大量实测数据的分析,总结了这一过程中地面沉降、地裂缝、地下水位的动态变化规律,所有证据都表明了地面沉降的减弱或停止。同时指出浅部沉降、局部区块地下水位漏斗与地面沉降依然严重。  相似文献   

13.
于军  武健强 《江苏地质》2008,32(2):113-117
平原区超采地下水引发的地面沉降地质灾害已成为影响这些地区经济可持续发展的重要制约因素,如何从收益、成本、风险三个方面为决策者提供制定地面沉降相关防治措施的综合支持,实现灾害防治从被动应对向主动防御转变,是地面沉降防治研究领域的新课题。在综合考虑苏锡常地区技术、经济、人类活动等因素基础上,从地面沉降总体风险和地区差异水平出发,提出构建地面沉降风险评价模型及决策支持系统的初步研究思路和方法,为实现地面沉降防治的科学化决策管理进行了探索。  相似文献   

14.
 The smectite dehydration theory developed by Ransom and Helgeson was applied for simulation of land subsidence in the Yun-Lin coastal area, Taiwan. The volumetric reduction of smectite clay at equilibrium state was computed by assuming that the dehydration of interlayer water in smectite clay can be described with a regular solid solution reaction. By using the in situ stratigraphic data collected from the subsidence monitoring wells in the simulated area, the amounts of land subsidence caused by smectite dehydration in three scenarios with pressure variation were calculated. The results indicate that significant amounts of land subsidence can be attributed to smectite dehydration. This finding reveals that smectite dehydration is of importance for assessment and prediction of land subsidence. Additionally, the results also indicate the overburden weight has a larger effect on clay dehydration than the effective stress change resulting from over-pumping, although both of them induce relatively minor variations on land subsidence. Received: 23 February 2000 · Accepted: 23 March 2000  相似文献   

15.
Land subsidence in China occurs predominantly in 17 provinces (cities) situated in the eastern and middle regions of the country, including Shanghai, Tianjin and Jiangsu, and Hebei provinces. It is primarily caused by groundwater overpumping. One of the areas most severely affected by land subsidence is the Yangtze Delta, most of which consists of Shanghai City, the Su-Xi-Chang area (Suzhou, Wuxi and Changzhou cities) of Jiangsu Province, and the Hang-Jia-Hu area (Hangzhou, Jiaxing and Huzhou cities) of Zhejiang Province. The excessive exploitation of groundwater forms in a large regional cone of depression and, consequently, land subsidence is also regional, currently centered in the Shanghai and Su-Xi-Chang areas. In 2002, the maximum cumulative subsidence of Shanghai, Su-Xi-Chang and Hang-Jia-Hu were 2.63 m, 2.00 and 1.06 m, respectively. The land subsidence area is continuing to expand throughout the Yangtze Delta. To study the characteristics and the pattern of this land subsidence, the government has implemented a monitoring system involving the placement of 37 groups of extensometers (layers marks) and drilling of more than 1000 observation wells. These provide an invaluable historical record of deformation and pore water pressure and facilitate studies on the special features of soil deformation when the groundwater level changes due to pumping. Several measures have been taken in recent years to control the development of the land subsidence in the different areas; these include groundwater injection, prohibition of pumping deep confined groundwater, and an adjustment of the pumping depth and magnitude of the groundwater withdrawn. At present, although the subsidence area is still increasing slowly, the subsidence rate is controlled.  相似文献   

16.
开采浅层地下水对地面沉降影响的探讨   总被引:5,自引:0,他引:5  
苏锡常地区由于长期过量开采深层地下水,已诱发了严重的地面沉降灾害。为此,江苏省政府下达了在2005年全面禁采深层地下水的文件。为解决用水问题,许多专家、学者建议开采利用浅层地下水。在苏锡常地区开采浅层地下水是否会同样诱发严重的地面沉降问题,是目前争议的焦点。文章详述了苏锡常地区水文地质条件及地面沉降现状,确定了地面沉降的各种影响因素,分析对比了浅层地下水与深层地下水在开采条件下所能引起的地面沉降量,说明采用合理的开采工艺开发利用浅层地下水不会诱发严重的地面沉降。  相似文献   

17.
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.  相似文献   

18.
根据汉口新业大厦水文地质与工程地质条件,建立开采地下水非稳定流定解问题三维数学模型,利用现有承压含水层非稳定流定解问题数值方案求解,重点讨论了源汇项的具体数学表达式。又简介根据达西定律和水均衡原理,建立了三维有限差分数值方程及其解法。根据土的有效应力原理和压密原理推导出了抽水沉降非线性压密方程,并研制了相应的三维有限元和有限差分计算程序。最后,对该环境岩土工程问题进行了分析和评价,计算结果与实测结果符合较好。  相似文献   

19.
李伟  武健强 《世界地质》2015,34(3):862-869
运用精密水准测量、自动化监测、GPS测量、In SAR监测、光纤监测等多种技术手段开展了苏锡常地区地面沉降监测工作。随着地面沉降时空动态的不断演变,不同监测技术手段的应用效果出现较大差异,需要探讨动态变化的地面沉降条件下不同监测方法的适用性,并以此建立更为高效、可靠的监测方法体系。笔者在总结以往工作基础上,对所使用的方法进行了梳理和总结,分析了不同方法的优缺点及其适用性,提出应根据工作程度实施各种监测技术方法搭配及集成应用的监测方法体系的结论。  相似文献   

20.
Monitoring land subsidence in Semarang,Indonesia   总被引:1,自引:0,他引:1  
Semarang is one of the biggest cities in Indonesia and nowadays suffering from extended land subsidence, which is due to groundwater withdrawal, to natural consolidation of alluvium soil and to the load of constructions. Land subsidence causes damages to infrastructure, buildings, and results in tides moving into low-lying areas. Up to the present, there has been no comprehensive information about the land subsidence and its monitoring in Semarang. This paper examines digital elevation model (DEM) and benchmark data in Geographic Information System (GIS) raster operation for the monitoring of the land subsidence in Semarang. This method will predict and quantify the extent of subsidence in future years. The future land subsidence prediction is generated from the expected future DEM in GIS environment using ILWIS package. The procedure is useful especially in areas with scarce data. The resulting maps designate the area of land subsidence that increases rapidly and it is predicted that in 2020, an area of 27.5 ha will be situated 1.5–2.0 m below sea level. This calculation is based on the assumption that the rate of land subsidence is linear and no action is taken to protect the area from subsidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号