首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用GPS组合观测值建立区域电离层模型研究   总被引:5,自引:1,他引:4  
介绍了VTEC模型的基本原理,给出了三种利用载波相位观测值改善伪距观测值精度的方法,利用三种组合观测值分别建立VTEC模型,并与利用伪距观测值计算的VTEC模型的精度进行比较。  相似文献   

2.
Differential ionospheric slant delays are obtained from a quiet-time, three-dimensional ionospheric electron density model, called the TaiWan Ionosphere Model (TWIM), to be used in code-based differential GPS positioning. The code observations are acquired from nine continuously operating GPS stations around Taiwan whose baseline ranged from 19 to 340 km. Daily 24-hour epoch-per-epoch positioning obtained for 70 most geomagnetic quiet days (2008–2010) for each of the 72 baselines. The performance of TWIM has been compared with the standard operational Klobuchar model (KLB) used by typical single-frequency receivers and the IGS global ionospheric model (GIM). Generally, TWIM performed well in reducing the differential ionospheric delay especially for long baselines and different levels of low solar activity. It has a much better performance compared to the operational KLB model. TWIM also performed similarly with GIM, though GIM has the best performance overall. GIM has the best ionospheric gradient estimates among the three models whose differential ionospheric delay-to-horizontal error ratio is more than 0.25. This is followed closely by TWIM with about 0.20. KLB only has a ratio of <0.10. The similarity of the performance of TWIM and GIM demonstrates the feasibility of TWIM in correcting for differential ionospheric delays in the C/A code pseudorange that is caused by electron density gradients in the ionosphere. It can provide decimeter-to-centimeter level accuracy in differential GPS positioning for single-frequency receivers during geomagnetic quiet conditions across all seasons and different levels of low solar activities.  相似文献   

3.
Li  Hang  Wang  Zemin  An  Jiachun 《GPS Solutions》2017,21(4):1669-1677
GPS Solutions - Differential code biases (DCBs) of the global positioning system (GPS) are generally estimated together with total electron content (TEC) along the signal transmission path through...  相似文献   

4.
兰孝奇  李森  解坤 《测绘科学》2012,37(4):17-18,31
电离层是近地空间的重要组成部分,如何对电离层的异常扰动进行合理监测与预报一直是空间物理领域的研究课题.本文将计算机层析成像技术引入到电离层扰动监测中,利用大量的区域地基GPS观测数据,借助代数层析迭代算法反演得到三维电离层电子密度;并将层析结果与国际电离层参考模型IRI2007进行对比分析,结果表明:地基CPS层析所得的电离层电子密度与IRI2007基本一致,但层析结果精度略高于IRI2007模型.  相似文献   

5.
The regional ionospheric model is adopted to determine satellite-plus-receiver differential delay. The satellite-plus-receiver differential delay is estimated as constant values for each day. Dual-frequency GPS pseudo-ranges observables are used to compute vertical TEC (VTEC). All the monthly mean VTEC profiles are represented by graphs using GPS data of the Beijing IGS site between 2000 and 2004. The monthly averaged values and amplitudes of VTEC are also represented by graphs. The results indicate that the VTEC has seasonal dependency. The monthly averaged values and amplitudes of VTEC in 2000 are about 2 times larger than that in 2004. The maximum VTEC values are observed in March and April, while the minimum VTEC values are observed in December. The seasonal variations trend is found to be similar after polynomial fitting between 2000 and 2004.  相似文献   

6.
7.
8.
非线性半参数模型在GPS系统误差处理中的应用   总被引:6,自引:1,他引:6  
本文总结了当前测量界对系统误差的处理方法,提出了用非线性半参数核估计来处理GPS双差定位中系统误差的方法,即用非线性半参数模型中的非参数分量表达双差模型中残余的系统误差。最后通过算例检验了此方法对于提取GPS双差定位中残余的系统误差的有效性。  相似文献   

9.
The critical frequency of ionospheric F2 layer (foF2) is a measure of the highest frequency of radio signal that may be reflected back by the F2 layer, and it is associated with ionospheric peak electron density in the F2 layer. Accurate long-term foF2 variations are usually derived from ionosonde observations. In this paper, we propose a new method to observe foF2 using a stand-alone global positioning system (GPS) receiver. The proposed method relies on the mathematical equation that relates foF2 to GPS observations. The equation is then implemented in the Kalman filter algorithm to estimate foF2 at every epoch of the observation (30-s rate). Unlike existing methods, the proposed method does not require any additional information from ionosonde observations and does not require any network of GPS receivers. It only requires as inputs the ionospheric scale height and the modeled plasmaspheric electron content, which practically can be derived from any existing ionospheric/plasmaspheric model. We applied the proposed method to estimate long-term variations of foF2 at three GPS stations located at the northern hemisphere (NICO, Cyprus), the southern hemisphere (STR1, Australia) and the south pole (SYOG, Antarctic). To assess the performance of the proposed method, we then compared the results against those derived by ionosonde observations and the International Reference Ionosphere (IRI) 2012 model. We found that, during the period of high solar activity (2011–2012), the values of absolute mean bias between foF2 derived by the proposed method and ionosonde observations are in the range of 0.2–0.5 MHz, while those during the period of low solar activity (2009–2010) are in the range of 0.05–0.15 MHz. Furthermore, the root-mean-square-error (RMSE) values during high and low solar activities are in the range of 0.8–0.9 MHz and of 0.6–0.7 MHz, respectively. We also noticed that the values of absolute mean bias and RMSE between foF2 derived by the proposed method and the IRI-2012 model are slightly larger than those between the proposed method and ionosonde observations. These results demonstrate that the proposed method can estimate foF2 with a comparable accuracy. Since the proposed method can estimate foF2 at every epoch of the observation, it therefore has promising applications for investigating various scales (from small to large) of foF2 irregularities.  相似文献   

10.
基于青岛站2000年8月至2006年4月间半个太阳活动周的GPS和测高仪的同步观测,提取期间的电离层TEC和f_oF_2的小时观测数据,联合分析该地区电离层板厚的日变化、季节变化和随太阳活动变化,研究表明青岛地区电离层板厚在日出前时段出现明显的增强峰,并随季节和太阳活动呈现出较复杂的变化关系.利用板厚的相对偏差,探讨了电离层板厚扰动变化分布特征.  相似文献   

11.
Validating ocean tide loading models using GPS   总被引:3,自引:0,他引:3  
Ocean tides cause periodic deformations of the Earths surface, also referred to as ocean tide loading (OTL). Tide-induced displacements of the Earths crust relying on OTL models are usually taken into account in GPS (Global Positioning System) data analyses. On the other hand, it is also possible to validate OTL models using GPS analyses. The following simple approach is used to validate OTL models. Based on a particular model, instantaneous corrections of the site coordinates due to OTL are computed. Site-specific scale factors, f, for these corrections are estimated in a standard least-squares adjustment process of GPS observations together with other relevant parameters. A resulting value of f close to unity indicates a good agreement of the model with the actual site displacements. Such scale factors are computed for about 140 globally distributed IGS (International GPS Service) tracking sites. Three OTL models derived from the ocean tide models FES95.2.1, FES99, and GOT00.2 are analyzed. As expected, the most reliable factors are estimated for sites with a large loading effect. In general, the scaling factors have a value close to unity and no significant differences between the three ocean tide models could be observed. It is found that the validation approach is easy to apply. Without requiring much additional effort for a global and self-consistent GPS data analysis, it allows detection of general model misfits on the basis of a large number of globally distributed sites. For detailed validation studies on OTL models, the simultaneous estimation of amplitudes and phases for the main contributing partial tides within a GPS parameter adjustment process would provide more detailed answers.  相似文献   

12.
Compensation for differential code bias (DCB) is necessary because it is the major source of errors in total electron content (TEC) measurements. The DCB estimation performance is degraded when only the regional GPS network is used. Because DCB estimation is highly correlated with ionospheric modeling, this degradation is particularly evident for measurements concentrated in an area of high TEC concentration. This study proposes a DCB estimation method that uses the long-term stability of the DCB to improve the estimation performance of the regional GPS network. We estimate satellite DCBs by assuming their constancy over seven months. This extended period increases the number of measurements used in DCB estimation and changes the local time distribution of collected measurements. As a result, the unbalanced distribution of specific ionospheric conditions disappears. Tests are performed using both global and regional networks, and the estimation performance is evaluated based on the position error and pseudorange residuals. First, the difference between the global and regional networks when using the conventional method is analyzed. Second, proposed methods are applied to regional networks. The proposed method can improve the DCB estimation performance, and the results are similar to those obtained using one-day global network data.  相似文献   

13.
Time transfer using GPS carrier phase: error propagation and results   总被引:1,自引:3,他引:1  
 A joint time-transfer project between the Astronomical Institute of the University of Berne (AIUB) and the Swiss Federal Office of Metrology and Accreditation (METAS) was initiated to investigate the power of the time transfer using GPS carrier phase observations. Studies carried out in the context of this project are presented. The error propagation for the time-transfer solution using GPS carrier phase observations was investigated. To this purpose a simulation study was performed. Special interest was focussed on errors in the vertical component of the station position, antenna phase-center variations and orbit errors. A constant error in the vertical component introduces a drift in the time-transfer results for long baselines in east–west directions. The simulation study was completed by investigating the profit for time transfer when introducing the integer carrier phase ambiguities from a double-difference solution. This may reduce the drift in the time-transfer results caused by constant vertical error sources. The results from the present time-transfer solution are shown in comparison to results obtained with independent time-transfer techniques. The interpretation of the comparison benefits from the investigations of the error propagation study. Two types of solutions are produced on a regular basis at AIUB: one based on the rapid orbits from CODE, the other on the CODE final orbits. The rapid solution is available the day after the observations and has nearly the same quality as the final solution, which has a latency of about one week. The differences between these two solutions are below the nanosecond level. The differences from independent time-transfer techniques such as TWSTFT (two-way satellite time and frequency transfer) are a few nanoseconds for both products. Received: 15 November 2001 / Accepted: 6 September 2002 Correspondence to:R. Dach  相似文献   

14.
It is possible for unreported Global Positioning System satellite faults to cause phase variations mimicking the effect of ionospheric scintillation. A case study of an event on 17 May, 2011 is presented. For approximately 695?s, the L1 signal from the Navstar 43 satellite (pseudo-random number 13) contained pulses of rapid phase variation, in such a manner as to cause a large rise in the sigma-phi scintillation metric. The event was simultaneously observed from two receivers in England, placed 190?km apart. A range of other explanations, that included genuine ionospheric scintillation, were considered but found to be highly unlikely. We therefore recommend that precautions be taken when interpreting phase scintillation values, to prevent satellite faults from contaminating data.  相似文献   

15.
Nowadays, GPS receivers are very reliable because of their good accuracy and precision; however, uncertainty is also inherent in geospatial data. Quality of GPS measurements can be influenced by atmospheric disturbances, multipathing, synchronization of clocks, satellite geometry, geographical features of the observed region, low broadcasting coverage, inadequate transmitting formats, or human or instrumental unknown errors. Assuming that the scenario and technical conditions that can influence the quality of GPS measurements are optimal, that functional and stochastic models that process the signals to a geodetic measurement are correct, and that all the GPS observables are taken in the same conditions, it is still possible to estimate the positional errors as the difference between the real coordinates and those measured by the GPS. In this paper, three spatial linear mixed models, one for each axis, are used for modelling real-time kinematic GPS accuracy and precision, of a multiple-reference-station network in dual-frequency with carrier phase measurements. Along the paper, the proposed models provide an estimate of the “accuracy” in terms of bias defined as the difference between real coordinates and measured coordinates after being processed and “precision” through the standard errors of the estimated differences. This is done using ten different transmitting formats. Mapping and quantifying these differences can be interesting for users and GPS professionals. The performance of these models is illustrated by mapping positional error estimates within the whole region of Navarre, Spain. Sampled data have been taken in 54 out of the 211 geodetic vertex points of this region. Maps show interesting error patterns depending on transmitting formats, the different axes, and the geographical characteristics of the region. Higher differences are found in regions with bad broadcasting coverage, due to the presence of mountains and high degree of humidity.  相似文献   

16.
We report on the FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) limb-viewing observations of GPS L-band scintillations since mid-2006 and propose to study global F-layer irregularity morphology. The FS3/COSMIC has generally performed more than 1000 ionospheric radio occultation (RO) observations per day. We reprocess 1-Hz amplitude data and obtain complete limb-viewing profiles of the undersampling (sampling frequency lower than Fresnel frequency) S4 scintillation index from about 80% of the RO observations. There are a few percent of FS3/COSMIC RO observations having greater than 0.09 undersampling S4max values on average. However, seven identified areas, Central Pacific Area (?20° to 20° dip latitude, 160°E–130°W), South American Area (?20° to 20° dip latitude, 100°W–30°W), African Area (?20° to 20° dip latitude, 30°W–50°E), European Area (30°–55°N, 0°–55°E), Japan Sea Area (35°–55°N, 120°–150°E), Arctic Area (>65° dip latitude), and Antarctic Area (<?65° dip latitude), have been designated to have a much higher percentage of strong limb-viewing L-band scintillations. During the years in most of the last sunspot cycle from mid-2006 to the end 2014, the scintillation climatology, namely, its variations with each identified area, season, local time, magnetic activity, and solar activity, have been documented.  相似文献   

17.
崔书珍  周金国  彭军还 《测绘科学》2009,34(5):55-56,234
本文利用VTEC(the Vertical Total Electron Contents)增量和VTEC变化率分析了电离层在2003年10月28日太阳耀斑期间中国的四个IGS跟踪站的响应情况.通过分析比较说明用VTEC变化率似更适合探测电离层对太阳耀斑的响应,并有望发现耀斑期间电离层的一些扰动现象,但在能得到高精度的绝对离层延迟的情况下,利用VTEC增量能准确全面地反映电离层对耀斑响应的整体变化情况.  相似文献   

18.
研究电离层延迟的精化模型是一条高精度提取区域电离层延迟的可靠途径。常用的电离层延迟多项式函数模型,忽略了电离层延迟的局部特性,限制了建模精度,也不利于分析建模方法对模型求解精度的影响。针对多项式函数模型存在的不足,该文提出了电离层延迟的IDPB模型,将电离层延迟分为概略值和修正值两部分进行解算,解决拟合曲面的光滑度和逼近精确度之间存在着矛盾。结合JSCORS参考站的实测数据进行分析验证,IDPB模型可以提高电离层延迟解算的精度,同时可以缓解多项式函数模型解算的各时段电离层延迟的不连续性。  相似文献   

19.
刘忠  瞿伟  王少闽 《测绘工程》2007,16(5):28-30,35
为了减弱GPS单点定位中残余的系统偏差对参数估值精度的影响,在误差方程中引入一非参数分量来表示测量中残余的系统误差,即利用半参数模型来精化GPS绝对定位的函数模型。最后利用实测GPS数据检验了此算法的有效性,计算结果表明在一定程度上该算法不仅能够提高参数估值的精度,而且还能提取出平差模型中残余的系统偏差。但因为半参数模型在测量数据处理中的应用才刚刚起步,还有许多问题值得在理论与实践上进行深入的探讨与研究。  相似文献   

20.
We study the characteristics of the random GPS positioning errors when the pseudorange errors differ for each satellite. A concise, explicit, analytical formula is derived for the covariance of the positioning error by using singular value decomposition. It is composed of a uniform error covariance together with additional contributions from those satellites with larger pseudorange errors. The eigenvectors of the uniform error covariance define the principal directions of the 4-dimensional error ellipsoid, and the eigenvalues are the squares of the semi-axes. The additional part from individual satellites has only one eigenvector and one eigenvalue. This makes the error ellipsoid enlarge mainly along a direction related to both the overall satellite geometry and the position of the specific satellites. The theory is validated by simulating the GPS constellation and pseudorange measurements. The random positioning error is examined while any one or more pseudorange errors are increased. Horizontal positioning error distributions are presented to demonstrate the variations of the orientation and size of the error ellipses with the pseudorange error of a specific satellite. The results show that the analytical formula describes the positioning error accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号