首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Meteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s = 1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s = 1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5–10 ms–1) during early January and maxima (15–20 ms–1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4–6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5–10 ms–1 in amplitude) with distinct periods (i.e., 5 days and 8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s = 1, but that at 68°S there is probably a mixture between s = 1 and other zonal wavenumber oscillations (most probably s = 2). The mechanism responsible for the existence of the 12-h s = 1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s = 1 feature, and thermal excitation in the troposphere.  相似文献   

2.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

3.
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4.  相似文献   

4.
Wind observations made at Gadanki (13.5°N) by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2–6) h from the power spectral density (PSD) spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.  相似文献   

5.
Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s−1 km−1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity.  相似文献   

6.
The capabilities of the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E) during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1/2 km from the stratopause, 3/4 km and 6/10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of –0.3 m/s and observed periods peaking at 3/4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.  相似文献   

7.
Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous) diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3–h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km) resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum) of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.  相似文献   

8.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

9.
A mesoscale model has been applied to calculate climatological means of the surface wind. A reliable average requires more than 40 model runs, which are differentiated by the direction and speed of the geostrophic wind under the assumption of neutral stratification. The frequency distributions of the geostrophic wind have been taken from observations of the 850-hPa winds at the radiosonde station in Prague for a 10-year period. The simulation results have been averaged over all sectors and speed classes of the geostrophic wind according to their frequencies. A comparison of the calculated mean wind speeds with observed ones shows deviations of about 0.4 ms−1 outside the mountains. The representation of steep topography and isolated mountains on the basis of a 3-km horizontal resolution of the simulations needs special treatment in order to reduce the gap of up to 4 ms−1 between observed and simulated mean wind speeds over mountains. Therefore, an empiric speed-up formula has been applied to the isolated mountains that otherwise would fall through the 3-km meshes. The corresponding deviations have been reduced to 1.5 ms−1.  相似文献   

10.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

11.
The consequences of a coastal upwelling event on physical and chemical patterns were studied in the central Gulf of Finland. Weekly mapping of hydrographical and -chemical fields were carried out across the Gulf between Tallinn and Helsinki in July–August 2006. In each survey, vertical profiles of temperature and salinity were recorded at 27 stations and water samples for chemical analyses (PO43−, NO2+NO3) were collected at 14 stations along the transect. An ordinary distribution of hydrophysical and -chemical variables with the seasonal thermocline at the depths of 10–20 m was observed in the beginning of the measurements in July. Nutrient concentrations in the upper mixed layer were below the detection limit and nutriclines were located just below or in the lower part of the thermocline. In the first half of August, a very intense upwelling event occurred near the southern coast of the Gulf when waters with low temperature and high salinity from the intermediate layer surfaced. High nutrient concentrations were measured in the upwelled water – 0.4 μmol l−1 of phosphates and 0.6 μmol l−1 of nitrates+nitrites. We estimated the amount of nutrients transported into the surface layer as 238–290 tons of phosphorus (P)-PO43− and 175–255 tons of N-NOx for a 12 m thick, 20 km wide and 100 km long coastal stretch. Taking into account a characteristic along-shore extension of the upwelling of 200 km, the phosphate-phosphorus amount is approximately equal to the average total monthly riverine load of phosphorus to the Gulf of Finland. It is shown that TS-characteristics of water masses and vertical distribution of nutrients along the study transect experienced drastic changes caused by the upwelling event in the entire studied water column. TS-analysis of profiles obtained before and during the upwelling event suggests that while welled up, the cold intermediate layer water was mixed with the water from the upper mixed layer with a share of 85% and 15%. We suggest that the coastal upwelling events contribute remarkably to the vertical mixing of waters in the Gulf of Finland. Intrusions of nutrient-rich waters along the inclined isopycnal surfaces in the vicinity of upwelling front were revealed. The upwelling event widened the separation of phosphocline and nitracline which in turn prevented surfacing of nitrate+nitrite-nitrogen during the next upwelling event observed a week after the upwelling relaxation. A suggestion is made that such widening of nutricline separation caused by similar upwelling events in early summer could create favourable conditions for late summer cyanobacterial blooms.  相似文献   

12.
We investigated the response of phytoplankton and zooplankton to experimental alteration of nitrate and phosphate levels in outdoor enclosures. Experiments were conducted in summer and winter and in the absence and presence of a layer of soil. The tubs (12 in all) except the two plain water controls were manured initially with a mixture of fresh cowdung (50g 1−1), mustard oil cake (25 g l−1) and poultry wastes (25 g l−1; mostly excreta), prior to enrichment. Water samples were collected from the experimental tubs twice a week to measure selected physico-chemical and biological variables. Water temperature in the summer experiments ranged from 20–30 °C and during the winter experiments from 11–15 °C. The pH values ranged from 8.0 to 9.5 and the dissolved oxygen levels from 8.2–10.0 mg l−1. The levels of soluble reactive phosphorus and nitrate nitrogen ranged from undetectable levels to 1800 μg l−1 and 6000 μg l−1, respectively. The increase in chlorophyll-a following enrichment was rapid (3–7 days) during summer, but slower in winter (7–14 days). The predominant phytoplankton species observed in the tubs belong to the genera Sphaerocystis, Chlorella, Scenedesmus, Cosmarium, Ulothrix, Zygnema, Gonium and Pandorina. The rotifer species observed were Brachionus calyciflorus, Rotaria neptunia, Lecane bulla, L. luna, L. unguitata, Euchlanis dilatata, Asplanchna intermedia, Pseudoharringia spp., Eosphora spp., Lepadella ovalis, Epiphanes brachionus, Hexarthra mira and Cephalodella gibba. The cladocerans observed were Macrothrix spp. and Alona spp.  相似文献   

13.
Effect of the equatorward shift of the eastward and westward electrojets during magnetic storms main phase is analyzed based on the meridional chains of magnetic observatories EISCAT and IMAGE and several Russian observatories (geomagnetic longitude ≈110°, corrected geomagnetic latitudes 74°>φ>51°.) Magnetic storms of various Dst index intensity where the main phase falls on 1000 UT - 2400 UT interval were selected so that one of the observatory chains was located in the afternoon - near midnight sector of MLT. The eastward electrojet center shifts equatorward with Dst intensity increase: when Dst ≈ −50 nT the electrojet center is located at φ ≈ 62°, when Dst ≈ −300 nT it is placed at φ ≈ 54°. The westward electrojet center during magnetic storms main phase for intervals between substorms shifts equatorward with Dst increase: at φ ≈ 62° when Dst ≈ −100 nT and at φ ≈ 55° when Dst ≈ −300 nT. During substorms within the magnetic storms intervals the westward electrojet widens poleward covering latitudes φ ≈ 64°–65°. DMSP (F08, F10 and F11) satellite observations of auroral energy plasma precipitations at upper atmosphere altitudes were used to determine precipitation region structure and location of boundaries of various plasma domains during magnetic storms on May 10–11, 1992, February 5–7 and February 21–22, 1994. Interrelationships between center location, poleward and equatorward boundaries of electrojets and characteristic plasma regions are discussed. The electrojet center, poleward and equatorward boundaries along the magnetic observatories meridional chain were mapped to the magnetosphere using the geomagnetic field paraboloid model. The location of auroral energy oxygen ion regions in the night and evening magnetosphere is determined. Considerations are presented on the mechanism causing the appearance in the inner magnetosphere during active intervals of magnetic storms of ions with energy of tens KeV. In the framework of the magnetospheric magnetic field paraboloid model the influence of the ring current and magnetospheric tail plasma sheet currents on large-scale magnetosphere structure is considered.  相似文献   

14.
Radar measurements at Aberystwyth (52.4°N, 4.1°W) of winds at tropospheric and lower stratospheric heights are shown for 12–13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.  相似文献   

15.
A study of inertial scale gravity wave motions in the region of the atmosphere between 30 and 60 km has been undertaken, using wind and temperature data derived from rocket-borne falling sphere density experiments performed over Woomera, Australia between 1962 nad 1976. The gross features of the wave field compare favorably with those found in similar northern hemispheric studies. Wave propagation is found to be both vertically and horizontally anisotropic. A rotary spectral analysis indicates predominately upgoing wave energy, suggesting that the majority of sources of these waves lie below 30 km. A detailed statistical investigation of the waves, made using the Stokes parameters technique, reveals that phase progression is also highly directional in the horizontal, with a significant zonal component in summer, but with a strong meridional component in winter. Propagation towards the southeast is inferred in summer, with the waves possibly emanating from tropospheric sources in equatorial regions to the north of Australia. The technique also shows that, on average, the waves appear to have mean ellipse eccentricities (=f/) around 0.4–0.45. Indirect estimates of a number of important wave parameters are made. In particular,v andw flux estimates are made over several height intervals. The vertical gradient of density weighted flux implies wave-induced mean flow accelerations of the order 0.1–1 ms–1day–1. This suggests that dissipating gravity waves are a significant source of the momentum residuals that are encountered in studies of satellite data from this region.  相似文献   

16.
The thermospheric and ionospheric effects of the precipitating electron flux and field-aligned-current variations in the cusp have been modelled by the use of a new version of the global numerical model of the Earths upper atmosphere developed for studies of polar phenomena. The responses of the electron concentration, ion, electron and neutral temperature, thermospheric wind velocity and electric-field potential to the variations of the precipitating 0.23-keV electron flux intensity and field-aligned current density in the cusp have been calculated by solving the corresponding continuity, momentum and heat balance equations. Features of the atmospheric gravity wave generation and propagation from the cusp region after the electron precipitation and field-aligned current-density increases have been found for the cases of the motionless and moving cusp region. The magnitudes of the disturbances are noticeably larger in the case of the moving region of the precipitation. The thermospheric disturbances are generated mainly by the thermospheric heating due to the soft electron precipitation and propagate to lower latitudes as large-scale atmospheric gravity waves with the mean horizontal velocity of about 690 ms–1. They reveal appreciable magnitudes at significant distances from the cusp region. The meridional-wind-velocity disturbance at 65° geomagnetic latitude is of the same order (100 ms–1) as the background wind due to the solar heating, but is oppositely directed. The ionospheric disturbances have appreciable magnitudes at the geomagnetic latitudes 70°–85°. The electron-concentration and -temperature disturbances are caused mainly by the ionization and heating processes due to the precipitation, whereas the ion-temperature disturbances are influence strongly by Joule heating of the ion gas due to the electric-field disturbances in the cusp. The latter strongly influence the zonal- and meridional-wind disturbances as well via the effects of ion drag in the cusp region. The results obtained are of interest because of the location of the  相似文献   

17.
Observations of mesospheric winds over a period of four years with the partial reflection radar at Tirunelveli (8.7°N, 77.8°E), India, are presented in this study. The emphasis is on describing seasonal variabilities in mean zonal and meridional winds in the altitude region 70–98 km. The meridional winds exhibit overall transequatorial flow associated with differential heating in the Northern and Southern Hemispheres. At lower altitudes (70–80 km) the mean zonal winds reveal easterly flow during summer and westerly flow during winter, as expected from a circulation driven by solar forcing. In the higher altitude regime (80–98 km) and at all altitudes during equinox periods, the mean zonal flow is subjected to the semi-annual oscillation (SAO). The interannual variability detected in the occurrence of SAO over Tirunelveli has also been observed in the data sets obtained from the recent UARS satellite mission. Harmonic analysis results over a period of two years indicate the presence of long-period oscillations in the mean zonal wind at specific harmonic periods near 240, 150 and 120 days. Results presented in this study are discussed in the context of current understanding of equatorial wave propagation.  相似文献   

18.
The climatology of mean wind, diurnal and semidiurnal tide during the first year (1996–1997) of simultaneous wind observations at Wakkanai (45.4°N, 141.7°E) and Yamagawa (31.2°N, 130.6°E) is presented. The locations of the radars allow us to describe the latitudinal dependence of the tides. Tidal amplitude and phase profiles are compared with those of the global scale wave model (GSWM). While the observed amplitude profiles of the diurnal tide agree well with the GSWM values, the observed phase profiles often indicate longer vertical wavelengths than the GSWM phase profiles. In contrast to the GSWM simulation, the observations show a strong bimodal structure of the diurnal tide, with the phase advancing about 6 hours from summer to winter.  相似文献   

19.
In situ primary production data collected during 1978–1981 period and 1997–2000 period were combined to improve understanding of seasonal and spatial distribution of primary production in the southeastern Bering Sea. Mean daily primary production rates showed an apparent seasonal cycle with high rates in May and low rates in summer over the entire shelf of the southeastern Bering Sea except for oceanic region due to lack of data. There was also an increasing trend of primary production rates in the fall over the inner shelf and the middle shelf. There was a decreasing trend of primary production rates between late April and mid-May over the inner shelf while there was an abrupt increase between late April and mid-May over the middle shelf and the outer shelf. In the shelf break region, there was an increasing pattern in late May. These suggest that there was a gradual progression of the development of the spring phytoplankton bloom from the inner shelf toward the shelf break region. There was also a latitudinal variability of primary production rate over the middle shelf, probably due to either spatial variations of the seasonal advance and retreat of sea ice or horizontal advection of saline water in the bottom layer. Annual rates of primary production across the southeastern Bering Sea shelf were 121, 150, 145, 110, and 84 g C m−2 yr−1 in the inner shelf, the middle shelf, the outer shelf, the shelf break, and oceanic region, respectively. High annual rates of primary production over the inner shelf can be attributed to continuous summer production based on regenerated nitrogen and/or a continuous supply of nitrogen at the inner front region, and to fall production. There were some possibilities of underestimation of annual primary production over the entire shelf due to lack of measurement in early spring and fall, which may be more apparent over the shelf break and oceanic region than the inner shelf, the middle, and the outer shelf. This study suggests that the response of primary production by climate change in the southeastern Bering Sea shelf can be misunderstood without proper temporal and seasonal measurement.  相似文献   

20.
Inorganic particulate material uptake and release over an oyster reef during a tidal cycle was measured every 11.8 days for one year. There was a net uptake on the flooding tides and a net release on ebbing tides. Particulate uptake was highest in late summer reaching a maximum of 230 g m−2 h−1. Particulate release was also highest in late summer reaching a maximum of 94 g m−2 h−1. On an annual basis, 86.7 kg m−2 y−1 of inorganic particulate material was taken up on flooding tides and 56.5 kg m−2 y−1 was released on ebbing tides. The pattern of uptake on flooding tides and release on ebbing tides was hypothesized to be the result of higher water velocities on ebbing tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号