首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxide mineralogy and magnetic properties were examined in a suite of fifteen olivine-normative diabase dike samples from western South Carolina in an attempt to elucidate their magnetic petrology. Titanomagnetite (1–2 vol.%) is the dominant Fe-Ti oxide mineral. Ilmenite and secondary magnetite are generally present in very minor amounts. Chromite constitutes up to 0.5 vol.%; its abundance and composition correlate with bulk rock Cr. Various types of fine-scale microstructure are evident in titanomagnetite crystals. The most important are patterned anisotropism and the development of trellis-type ilmenite lamellae. Microprobe analyses indicate: (1) titanomagnetite compositions, x, are mostly between 0.4 and 0.55, and (2) low analytical totals are characteristic of most titanomagnetites. Curie temperatures of the diabases are 500–540°C, which are several hundred degrees higher than predicted from the observed titanomagnetite x's (150–300°C). We attribute these higher Curie temperatures to oxidation of the titanomagnetites, which has produced “titanomaghemites” having visible microstructure and yielding low analyses (because they are cation deficient). Natural remanence magnetization and REM (ratio of natural remanence to saturation remanence) vary between 4 and 100 × 10−4 A m2 kg−1 and 0.0019 and 0.032, respectively. These properties inversely correlate with Cr content and demonstrably contrast Cr-rich and Cr-poor samples. Initial susceptibility, saturation magnetization and coercivity values show a two- to three-fold range. Variations in initial susceptibility and coercivities appear to be largely related to the type and extent of oxidation-induced microstructure in the titanomagnetites.  相似文献   

2.
The rock magnetic properties of the samples of dredged rocks composing the submarine volcanic edifices within the Sea-of-Okhotsk slope of the northern part of the Kuril Island Arc are studied. The measurements of the standard rock magnetic parameters, thermomagnetic analysis, petrographical studies, and microprobe investigations have been carried out. The magnetization of the studied rocks is mainly carried by the pseudo-single domain and multidomain titanomagnetite and low-Ti titanomagnetite grains. The high values of the natural remanent magnetization are due to the pseudo-single-domain structure of the titanomagnetite grains, whereas the high values of magnetic susceptibility are associated with the high concentration of ferrimagnetic grains. The highest Curie points are observed in the titanomagnetite grains of the igneous rocks composing the edifices of the Smirnov, Edelshtein, and 1.4 submarine volcanoes.  相似文献   

3.
In high Ti basanites from the Vogelsberg 1996 drillhole distinct variations in the field dependence of AC magnetic susceptibility correlate with compositional variations of titanomagnetite, as determined by temperature dependence of magnetic susceptibility. Curie temperatures for the basanites are in the range of 240 to 525°C. The field dependence reaches up to 20% for measurements in 30 A/m and 300 A/m AC field amplitude. It is demonstrated that two-field magnetic susceptibility measurements can prevail information about compositional changes of titanomagnetite and therefore support the interpretation of magnetic susceptibility logs from drillcores of basaltic rock suites.  相似文献   

4.
 Canonical discriminant function analysis was employed to discriminate between electron microprobe-determined titanomagnetite and hornblende analyses from Egmont volcano and Tongariro Volcanic Centre. Data sets of 436 titanomagnetite and 206 hornblende analyses from the two sources were used for the study. Titanomagnetite chemistry provided the best discrimination between these two sources with classification efficiencies of 99% for sample averages and 95% for individual analyses. The difference between sources for hornblende chemistry was less marked, but classification efficiencies of 100% for sample averages and 87% for individual analyses were achieved. Using the same methods a preliminary discrimination of individual Egmont volcano-sourced tephras was attempted. Titanomagnetite chemistry enabled the discrimination of several individual tephras or at least pairs of tephra units, but hornblende chemistry provided little discrimination. This technique provides an improvement on previous methods for chemically distinguishing distal tephra from the two sources as well as potentially identifying individual tephras from a particular source. A major advantage over previous discrimination techniques is that individual analyses can be classified with a known probability of group membership (with groups such as volcano source or an individual tephra unit). Tephras in a depositional environment where mixing is common such as within soil, loess and marine sequences, can be sourced or identified more easily with classification of individual grains. Received: 19 July 1995 / Accepted: 13 February 1996  相似文献   

5.
Low-field variation of magnetic susceptibility was investigated on a collection of several hundreds specimens of various minerals and rocks using the KLY-4S Kappabridge. The measurement is fully automated, being executed in 21 distinct fields ranging from 2 to 450 A/m (in one frequency of 875 Hz). The measurement is rapid, 7 min per specimen, so that large collections of specimens can be investigated. The results can be processed both graphically and mathematically. For the latter processing, parameters of two kinds were introduced. One characterizes the susceptibility change with field, the other one characterizes the field in which the susceptibility no longer obeys the Rayleigh law and starts becoming more complex.The results were evaluated statistically. Remarkable differences were revealed between individual minerals and between some rock types. For example, the field variation of susceptibility of pyrrhotite is in general an order of magnitude larger than that of titanomagnetite. The susceptibility increase in pyrrhotite starts at the field an order of magnitude lower than that of titanomagnetite. Low-field variation of susceptibility then appears as an interesting phenomeon that helps in the identification of magnetic minerals and in some cases also in assessing the compositional variation of them.  相似文献   

6.
A multi-parameter approach was used to correlate andesitic tephras in a complex tephra sequence ranging in age from ca. 23 to ca. 75 ka on the eastern ring plain of Ruapehu volcano, North Island. Field properties, combined with ferromagnesian mineral assemblages and mineral compositions, were required to map and correlate this sequence. Three tephra units could be identified based on their unique physical appearance, but other tephras could not be correlated on this basis alone. Hornblende and olivine proved to be valuable marker minerals enabling further distinction of two of the marker units recognised by field properties, as well as defining two further marker tephras. Unweathered titanomagnetite crystals, present in all of the tephras, were subjected to major-element analysis by electron microprobe. Canonical discriminant function analysis (DFA) of these analyses enabled the grouping and discrimination of tephra units, further aiding the identification of defined marker units, as well as defining new marker units. The titanomagnetite chemistry showed a strong relationship to the ferromagnesian mineralogy, showing that the ferromagnesian phenocrysts formed from the same melt or under the same melt conditions prior to eruption of each tephra. Canonical DFA was also applied to hornblende and olivine mineral analyses to identify further marker beds and to confirm identifications of previously defined units. This statistical analysis was found to be invaluable in reducing the large amount of compositional data from this study into a useable form for andesitic tephra correlation and mapping.  相似文献   

7.
The anisotropy of magnetic susceptibility (AMS) and rock magnetic properties were measured on specimens from a basalt plate that was cut from a vertical section of a basalt column from Hrepphólar, Iceland. Macroscopic structures are clearly distinguishable in the plate, including banding inferred to represent viscous fingering parallel to the vertical axis of the column. Rock magnetic experiments indicate that the dominant ferromagnetic (sensu lato) mineral is titanomagnetite, Fe 3?x Ti x O4, with a Ti-composition of x?=?~0.6. Magnetic properties are related to the position within the plate and reveal a dominant volume fraction of single domain titanomagnetite in the center of the basalt column, with multidomain titanomagnetite away from the center. The AMS determined by low-field measurements shows an inconclusive relationship with the visual structures, which arises from variation of the grain size (i.e., single domain versus multidomain) across the column. In contrast, the AMS measured with a high-field torsion magnetometer avoids the complication of magnetic domain state, as is demonstrated in this contribution, and additionally allows for the separation of ferrimagnetic from paramagnetic sub-fabrics. Both sub-fabrics display a clear relationship with the macroscopic structures and support the hypothesis that vertical flow of melt took place during development of the Hrepphólar columnar basalt. Maximum susceptibility axes of the ferrimagnetic sub-fabric are grouped near the vertical axis of the column. The paramagnetic sub-fabric varies systematically across the column in coincidence with internal structure. The shape of the magnetic susceptibility ellipsoid varies across the basalt column, showing an increasingly prolate fabric toward its center.  相似文献   

8.
Grains from a natural titanomagnetite are found to contain fine ex-solved regions with a higher Curie point than the host oxide. Experimental results are given, in which tests have been made of the influence of the magnetization of the ex-solution regions on the overall magnetization of specimens which contain a dispersion of the titanomagnetite grains in an inert matrix. The results are compared with those predicted by Stephenson for a model of similar properties.  相似文献   

9.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

10.
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS, SIRM) and grain size (χARM, ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of ~7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.  相似文献   

11.
High resolution electron microscope studies have been carried out on ‘zero-age’ (New Flow) basalts from the Juan de Fuca Ridge and on young (< 20 ka) basalts from the axis of the East Pacific Rise at 12°N. Such data lead to characterization of the magnetic minerals, especially those of smaller grain size, which have been hypothesized by Kent and Gee to have undergone grain size-dependent alteration. In addition to larger titanomagnetite grains, abundant submicrometer titanomagnetite has been observed in globules within a glassy matrix. These grains, likely to be single-domain (SD) or superparamagnetic, are associated with apatite, uncommon pyrrhotite and residual glass. The submicrometer titanomagnetite grains have a wide compositional range (0 < x < 0.8), where x is the fraction of ulvöspinel component, whereas the larger, multi-domain (MD)-sized titanomagnetite grains have a narrow composition range of approximately x = 0.6. This variability in Ti content provides a ready explanation for the thermal rock magnetic properties observed by Kent and Gee and eliminates the need to invoke extremely rapid (< 20 ka) alteration of these young basalts.  相似文献   

12.
Izvestiya, Physics of the Solid Earth - Artificial chemical remanent magnetization (CRM) created on a basalt rock from the Red Sea rift zone, originally containing titanomagnetite (TM) with a Curie...  相似文献   

13.
Results from a detailed magnetic survey and paleomagnetic measurements on oriented rock samples from the summit of Cobb Seamount indicate that the Seamount is complexly magnetized, recording at least one field reversal. The remanent magnetization probably resides in single-domain titanomagnetite (10 mole % ulvo¨spinel in solid solution with magnetite) which is unlike that found in dredged basalts. The simplest explanation for this difference is that the Seamount's pinnacle formed subaerially.  相似文献   

14.
This study provides new thermomagnetic and petrographic data on specific basaltic rock association from the broader vicinity of the Lou?ná-Oberwiesenthal volcanic centre, western Bohemia/Saxony. Two types of volcanic rocks were recognized there: (i) high-Ti types (3.5–5.2 wt% TiO2) represented by (mela)nephelinite s.s., and sporadically present (ii) medium-Ti types (2.5–3.5 wt% TiO2) of olivine nephelinite, nepheline basanite and phonotephrite compositions. In order to examine the rock-magnetic behaviour, they were studied for their variations in the Curie temperature (TC) and field-dependent susceptibility, spinel group minerals, chemistry and petrology. Magnetic susceptibility of ulvöspinel-rich titanomagnetite, as a dominant magnetic carrier, depends on the amplitude of measured magnetic field, whereas pure magnetite is field-independent. Field dependence parameter kHD of the studied basaltic rocks ranges from 0.8 to 18.7%, TiO2 contents in titanomagnetite range from 12.7 to 20.1 wt.%. TiO2 content in titanomagnetite does not correlate with whole-rock TiO2 content (2.8 to 5.6 wt.%). The content of substituted titanium in the sublattice of magnetite is also sensitively reflected in the Curie temperature, ranging from 200 to 580°C. The spinel group minerals are designated as titanomagnetite with the dominance of ulvöspinel, magnetite and magnesioferrite components, or titanomagnetite with the magnetite, ulvöspinel and magnesioferrite components. Only two samples are characterized by a significant presence of Cr-spinel and magnesiochromite components forming cores of titanomagnetites. The titanomagnetite-bearing rocks in the studied area, likewise the low- to medium-Ti basaltic rocks from the ?eské st?edoho?í Mts., provide similar thermomagnetic curves.  相似文献   

15.
Summary Analysis of saturation magnetization measurements and data from the literature indicate that the cation distribution in the titanomagnetite solid solution series is temperature dependent. The ionic configuration of ferric and ferrous ions on both lattice sites of their spinel structure can be described by a modified Boltzmann relation in agreement with theoretical consideratios. Thermodynamic equilibrium isotherms for the cation distribution and the resulting variation of saturation magnetization are calculated on the basis of the experimental values. These results should be especially valuable for the interpretation of magnetic properties of rapidly cooled igneous rock units where a respective high-temperature metastable state may exist in the magnetic ore component.Further measurements of the Curie temperature and lattice constant did not confirm a similar effect. Both these parameters should therefore be qualified for the identification of naturally occurring titanomagnetites.  相似文献   

16.
Electron microprobe and reflected light microscopic examinations confirm the presence of composite grains of ferrian ilmenite with Xilm = 0.53 and titanomagnetite with Xusp = 0.13 in a dacite with self-reversed TRM. A parallel TRM component associated with titanomagnetite and a reversed component associated with self-reversing ferrian ilmenite are the principal NRM components. A subordinate, parallel component is associated with ferrian ilmenite which is not magnetically coupled to an “χ-phase”. The natural self-reversing properties are mainly a consequence of the dacite's high quenching temperature, calculated at 862–864°C using the Fe—Ti oxide geothermometer, and are most consistent with the self-reversal mechanism proposed by Lawson et al. [9].The conduction of thermal demagnetization and TRM induction tests in air had a much greater effect on the Fe—Ti oxides than did natural cooling, and resulted in significant oxidation with the consequent modification of some magnetic properties and the formation of another reversed TRM component. The subdivision of titanomagnetite grains by oxidation along fractures decreased its effective grain size and caused an apparent increase in its magnetic intensity, in addition to a slight increase in its resistance to alternating field demagnetization. The χ-phase associated with the reversed NRM component, with 0.42 > Xilm 0.31, became Fe-enriched during the earlier stages of heat treatment. It is suggested that after heating at 600°C for two hours or more, this χ-phase exsolves as titanohematite with Xilm < 0.33. The ferrian ilmenite host is consequently enriched in Ti, and another χ-phase much closer in composition to the host generates a reversed TRM component with Tb < 200°C.  相似文献   

17.
To understand the oxidation state and process of oxidation of lava domes, we carried out magnetic petrological analyses of lava samples obtained from domes and block-and-ash-flow deposits associated with the 1991–1995 eruption of Unzen volcano, Japan. As a result, we recognize three different types of magnetic petrology, each related to deuteric high-temperature oxidation during initial cooling. Type A oxides are characterized by homogenous titanomagnetite and titanohematite, indicating a low oxidation state and high titanomagnetite concentrations. Type B oxides are weakly exsolved and contain titanohematite laths and rutile lenses, indicating a higher oxidation state. Type C oxides, which represent the highest oxidation state, are completely exsolved and composed of Ti-poor titanomagnetite, titanohematite, rutile, and pseudobrookite, indicating high hematite concentrations. Some grains in Types A and B show indications of reduction, which was related to interaction with volcanic gases subsequent to high-temperature oxidation. In terms of geological occurrence, the oxidation processes probably differed for endogenous and exogenous domes. Endogenous dome lavas are oxidized concentrically and are classified into the three types according to their location within the dome: samples from the surface are strongly oxidized and classified as Type C, while the inner part is unoxidized and classified as Type A. Exogenous dome lavas are unoxidized and assigned to Type A. Some samples show signs of reduction, which may have occurred around fumaroles. We propose that location within the dome and the process of dome growth are the factors that control oxidation.  相似文献   

18.
Magnetic minerals are mostly identified by a combination of rock magnetic and microscopic techniques and the ferrofluid method in combination with an optical microscope was applied during the last decades. But today, scanning electron microscopy (SEM) is preferred for the observation of mineral phases because its depth of focus and resolving capability at the same magnification. In this study, we report on a method, which allows ferrofluid application under the SEM. We coated a polished basalt sample containing titanomagnetite grains with high demagnetizing fields, with a colloidal suspension containing magnetite particles (ferrofluid) ranging in size between 11 and 20 nm. Due to large gradients of multidomain grains the ferrofluid particles adhered to their surfaces. Other grains of similar composition present (ilmenohematite) but with low demagnetizing fields do not generate large magnetic gradients and therefore do not attract the colloidal particles. Upon evaporation of the ferrofluid and covering the sample with conducting material the magnetic grains with high demagnetizing field are easily identifiable under the scanning electron microscope. The different mineralogy observed by this method is confirmed by temperature dependent variation of magnetic susceptibility, revealing titanomagnetite and ilmenohematite as magnetic carriers in the basaltic samples.  相似文献   

19.
Highly vesicular, microporphyritic basaltic rocks have been dredged from the slow-spreading Spiess Ridge segment of the Southwest Indian Ridge. All the samples recovered are hyalocrystalline with plagioclase, clinopyroxene and olivine as phenocryst and microphenocryst phases. Titanomagnetite occurs as euhedral microphenocrysts in some of the more evolved samples. In terms of bulk rock and quench glass chemistry the lavas are characterised by highly evolved compositions(e.g. FeO*=10.3−14.2%;TiO2=2.0−3.4%;K2O=0.50−1.1%;MgO=6.0−3.5%;Zr=160−274ppm;Nb=14−32ppm) and can be classified as ferrobasalts. Isotopic and incompatible element ratios of the lavas(e.g.87Sr/86Sr=0.70325−0.70333;Zr/Nb=8.4−11.3;Y/Nb=2.3−1.4) indicate their strongly “enriched” nature (see also Dickey et al. [6]).

Quantitative major and trace element modelling indicates that most of the compositional variations observed can be attributed to low-pressure fractional crystallisation of plagioclase, clinopyroxene and minor olivine and titanomagnetite. The range in composition can be accounted for by up to 65% fractional crystallisation.

We suggest that the extreme differentiation of the Spiess Ridge lavas is related not to spreading rate, but to rate of magma supply. The basaltic melts appear to have evolved in a newly established zone of magmatic activity, associated with the most recent northward jump of the Bouvet triple junction, where they were effectively isolated from significant admixture of primitive magmas.  相似文献   


20.
The Ladakh Mesozoic ophiolite belt (western Himalaya) contains a pile of volcanic thrust sheets (Dras unit) which differ significantly in structure and composition from the ophiolitic mélange zones. The Dras unit is composed of pillow lavas, doleritic sills, very irregular basaltic (?basaltic andesites) and dacitic flows intercalated with pyroclastics, volcanoclastic sediments and radiolarian cherts. According to fossil evidence, this volcanism must have been active between Upper Jurassic and Upper Cretaceous.The presence of relict primary minerals, such as magnesiochromite, clinopyroxene, hastingsitic hornblende and Ti-magnetite as well as distinctive bulk chemistries, suggests that the volcanics belong to island arc tholeiite and to calc-alkaline rock series, typical of present island arcs in the Caribbean and Pacific.Model calculations incorporating probed phenocryst phases indicate that in addition to olivine, clinopyroxene and plagioclase, amphibole and titanomagnetite are crucial fractionating phases in the development of the dacites from a primitive tholeiitic melt. The latter process must have taken place at about 1000°C and at moderate depth of 5–15 km within or underneath the island arc. Today, hornblende-bearing mafic cumulates appear in the vicinity of Kargil within and close to the Dras volcanics.In a Sr-evolution diagram, the Dras volcanics have yielded a “pseudo-isochron” with a low initial ratio of 0.7035 ± 0.0003, which is in the same range as the mean of modern island arc volcanics. However, a geologically unrealistic age of 263 m.y., is obtained from the slope of this isochron.The upper mantle is regarded as the source material for the island arc tholeiitic magmas. Enrichment in K, Ba, Sr and LREE supports the involvement of components derived from dehydration or incipient melting of subducted Tethyan oceanic crust in the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号