首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geochemistry of the Leisure Bay Formation, Natal Metamorphic Province suggests that its protoliths were greywackes, pelites and arkoses that were deposited in an oceanic island arc environment. These rocks contain the mineral assemblage biotite + hypersthene + cordierite (with hercynite inclusions) + garnet + quartz + feldspar. Numerous generations of garnet genesis are evident from which a long history of metamorphism can be interpreted. M1 involved syn-D1 high temperature/low pressure metamorphism (4kb and >850oC) and dehydration melting to produce essentially anhydrous assemblages particularly in the vicinity of, and probably related to the intrusion of the Munster Suite sills. The inclusions of hercynite in cordierite and the garnet + quartz symplectites after hypersthene + plagioclase (550oC and 5kb) suggests isobaric cooling after M1. This indicates an anticlockwise P-T loop related to the early intrusion of subduction related calc-alkaline magmatic rocks. M2 involved syn-D2 dehydration melting of hydrous assemblages possibly related to the emplacement of many A-type rapakivi charnockite granitoids, which provided heat and loading. The D2 tectonism post-dated all lithologies in the region, except for syn- to late-D2 granitoid plutons, and is interpreted as a transpressional tectonothermal reworking of pre-existing (Proterozoic) crust at 1030Ma.  相似文献   

2.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   

3.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   

4.
Silica deficient Mg-Al granulites from Paramati within the Palghat-Cauvery Shear System contain sapphirine in association with corundum, spinel and sillimanite. Gedrite, which occurs commonly in this locality, coexists with cordierite, corundum and sillimanite. Mineral assemblages and reaction textures indicate peak metamorphism at ultrahigh- temperature conditions. This new locality provides evidence for extreme crustal metamorphism along the Archean-Proterozoic collision boundary in southern India.  相似文献   

5.
6.
7.
We report new occurrences of sapphirine- and corundum-bearing granulites intercalated within orthogneisses at Lachmanapatti and Malappatty in the northern part of Madurai Block. Sapphirine in these localities occurs either as needle-like intergrowth with cordierite and corundum in symplectites and medium- to fine-grained euhderal to subhedral crystals associated with cordierite and corundum (Lachmanapatti) or in association with plagioclase, corundum and gedrite (Malappatty). The sapphirine from Lachmanapatti is highly magnesian (XMg = 0.87-0.94) with higher Cr content (up to 0.9 pfu) as compared with those in other localities in the Madurai Block. The sapphirine-corundum association reported in this study has important bearing on the ultrahigh-temperature metamorphism and exhumation history of the northern Madurai Block as well as on the tectonic evolution of the continental deep crust in southern India.  相似文献   

8.
中国大陆科学钻探工程主孔榴辉岩的岩石学研究   总被引:19,自引:0,他引:19       下载免费PDF全文
中国大陆科学钻探工程5000m主孔位于苏鲁超高压变质带南部。该钻孔0~2000m主要由榴辉岩、片麻岩、石榴石橄榄岩和少量片岩和石英岩组成。累积厚度达1000多米的榴辉岩具有不同的矿物组成、不同的矿物含量和不同的全岩化学成分,可划分成富Si的石英榴辉岩、富Ti的金红石榴辉岩、富Al的多硅白云母和蓝晶石榴辉岩、富Mg的双矿物榴辉岩和具有正常玄武岩成分的普通榴辉岩。榴辉岩的原岩包括基性层状侵入岩和变质表壳岩。榴辉岩全岩成分对石榴石和绿辉石中某些化学组分的含量有明显控制,而且直接影响到变质条件估算的准确性。扩散成分环带的广泛发育表明超高压矿物在早期退变质过程中发生了成分再平衡。这一事实以及具有成分生长环带石榴石变斑晶的存在,为榴辉岩形成在更高温度(>940℃)和更高压力(>4.5GPa)条件下提供了有力的证据。  相似文献   

9.
The assemblages chlorite-pumpellyite-lawsonite-albite-quartz, chlorite-lawsonite-quartz-epidote and chlorite-epidote-albite-quartz occur in metabasaltic blocks and veins in a metamorphosed tectonic mélange in the structurally highest unit of the autochthonous and parautochthonous section underlying the Semail ophiolite in Saih Hatat, north-east Oman. The pre-Permian basement of this section contains mafic units characterized by the assemblage crossite-epidote-chlorite-quartz-albite /el actinolite. These assemblages indicate a down-section increase in metamorphic grade from 'lawsonite-albite facies' conditions in the mélange to 'epidote-blueschist' facies conditions in the basement.
Application of empirically and experimentally based thermobarometers as well as petrogenetic grids calculated for a model basaltic system indicates that the P-T conditions of metamorphism ranged from 3 to 6 kbar and 250 to 300 C for the mélange and P > 6.8 kbar, T > 310 C for the basement units. Textural relations interpreted in the context of petrogenetic grids indicate that these units followed clockwise P-T paths of evolution. The estimated P-T conditions and down-section increase in metamorphic grade in central, western and northern Saih Hatat are consistent with the hypothesis relating metamorphism to the Late Cretaceous tectonic loading of the continental margin by an ophiolite slab < 18 km in thickness. These results contrast with field and petrological observations documented for blueschists and eclogites exposed along the eastern coast of Saih Hatat which may have formed at an earlier stage in response to an Early Cretaceous collisional event.  相似文献   

10.
The granulite complex at Anakapalle, which was metamorphosedat 1000 Ma, comprises orthopyroxene granulites, leptynite, khondalite,mafic granulites, calc-silicate rock, spinel granulites, andtwo types of sapphirine granulites—one quartz-bearingand migmatitic and the other devoid of quartz and massive. Reactiontextures in conjunction with mineral-chemical data suggest severalcontinuous and discontinuous equilibria in these rocks. In orthopyroxenegranulites, dehydration-melting of biotite in the presence ofquartz occurred according to the reaction biotite+quartz= garnet (Py37)+K-feldspar+orthopyroxene + liquid. Later, this garnet broke down by the reaction garnet (Py37)+quartz= orthopyroxene + plagioclase. Subsequently, coronal garnet (Py30) and quartz were producedby the same reaction but proceeding in the opposite direction.In spinel granulites, garnet (Py42) and sillimanite were producedby the breakdown of spinel in the presence of quartz. In thetwo types of sapphirine granulites, garnet with variable pyropecontent broke down according to the reaction garnet = sapphirine + sillimanite + orthopyroxene. The highest pyrope content (59 mol %) was noted in garnets fromquartz-free sapphirine granulites compared with the quartz-bearingone (53 mol % pyrope). The calculated positions of the mineralreactions and diserete P-T points obtained by thermobarometrydefine a retrograde P-T trajectory during which a steep decompressionof 1.5 kbar from P-Tmax of 8 kbar and 900C was followed bynear-isobaric cooling of 300C. During this decompression, garnetwith variable pyrope contents in different rocks broke downon intersection with various divariant equilibria. Near-isobariccooling resulted in the formation of coronal garnet around second-generationorthopyroxene and plagioclase replacing earlier porphyroblasticgarnet in orthopyroxene granulites. It has been argued thatthe deduced P-T trajectory originated in an extensional regimeinvolving either a crust of near-normal thickness of a slightlyoverthickened crust owing to magmatic underaccretion.  相似文献   

11.
The Palghat Gap region is located near the centre of the large southern Indian granulite terrane. at the northern edge of the Kodaikanal charnockite massif. The dominant rock types in the region are hornblende-biotite ± orthopyroxene gneisses and charnockites along with minor amounts of intercalated mafic granulite, metapelite and calc-silicate. The P-T estimates from garnetiferous mafic granulites and metapelite samples are generally in the range 9-10 kbar and 800-900 C using both conventional thermobarometric methods and the TWEEQU thermobarometry program. These P-T estimates, which should be taken as minimum values, are among the highest yet reported for South Indian and Sri Lankan granulites. The occurrence of orthopyroxene + plagioclase symplectites around embayed garnet grains in the mafic granulites and cordierite rims around garnet grains in metapelite suggest an isothermal decompression-type path. Similarly, a core-rim P-T trajectory indicates c. 3 and 7 kbar decompression at high temperature in the mafic granulites and metapelite, respectively. In both rock types, the key to the determination of the retrograde P-T path was the recognition of small amounts of second generation plagioclase with a more anorthitic composition than the matrix plagioclase. The preservation of high garnet-pyroxene temperatures in the mafic granulites (despite small garnet grain size) suggests rapid cooling of the terrane. Calculated minimum cooling rates range from 8 to 80 C Ma-1. Such cooling rates are more rapid than those associated with normal isostatic processes and suggest that the terrane was tectonically exhumed at high temperature.  相似文献   

12.
In this study, we reconstruct the inverted metamorphic sequence in the western Arunachal Himalaya using combined structural and metamorphic analyses of rocks of the Lesser and Greater Himalayan Sequences. Four thrust-bounded stratigraphic units, which from the lower to higher structural heights are (a) the Gondwana rocks and relatively weakly deformed metasediments of the Bomdila Group, (b) the tectonically interleaved sequence of Bomdila gneiss and Bomdila Group, (c) the Dirang Formation and (d) the Se La Group are exposed along the transect, Jira–Rupa–Bomdila–Dirang–Se La Pass. The Main Central thrust, which coincides with intense strain localization and the first appearance of kyanite-grade partial melt is placed at the base of the Se La Group.Five metamorphic zones from garnet through kyanite, kyanite migmatite, kyanite-sillimanite migmatite to K-feldspar-kyanite-sillimanite migmatites are sequentially developed in the metamorphosed low-alumina pelites of Dirang and Se La Group, with increasing structural heights. Three phases of deformation, D1–D2–D3 and two groups of planar structures, S1 and S2 are recognized, and S2 is the most pervasive one. Mineral growths in all these zones are dominantly late-to post-D2, excepting in some garnet-zone rocks, where syn-D1 garnet growths are documented. Metamorphic isograds, which are aligned parallel to S2 were subsequently folded during D3. The deformation produced plane-non-cylindrical fold along NW–SE axis.In the garnet-zone, peak metamorphism is marked by garnet growth through the reaction biotite + plagioclase → garnet + muscovite. An even earlier phase of syn-D1 garnet growth occurred in the chlorite stability field with or without epidote. In the kyanite-zone metapelites, kyanite appeared via the pressure-sensitive reaction, garnet + muscovite → kyanite + biotite + quartz. Staurolite was produced in the same rock by retrograde replacement of kyanite following the reaction, garnet + kyanite + H2O → staurolite + quartz. These reactions depart from the classical kyanite- and staurolite-isograd reactions in low-alumina pelites, encountered in other segments of eastern Himalaya. In the metapelites, just above the kyanite-zone, melting begins in the kyanite field, through water-saturated and water-undersaturated melting of paragonite component in white mica. Leucosomes formed through these reactions are characteristically free of K-feldspar, with sodic plagioclase and quartz as the dominant constituents. With increasing structural height, the melting shifts to water-undersaturated melting of muscovite component of white mica, producing an early K-feldspar + kyanite and later K-feldspar + sillimanite assemblages and granitic leucosomes.Applications of conventional geothermobarometry and average PT method reveal near isobaric (at P  8 kbar) increase in peak metamorphic temperatures from 550 °C in the garnet-zone to >700 °C for K-feldspar-kyanite-sillimanite-zone rocks. The findings of near isobaric metamorphic field gradient and by the reconstruction of the reaction history, reveal that the described inverted metamorphic sequence in the western Arunachal Himalaya, deviates from the classical Barrovian-type metamorphism. The tectonic implication of such a metamorphic evolution is discussed.  相似文献   

13.
SAJEEV  K.; OSANAI  Y. 《Journal of Petrology》2004,45(9):1821-1844
Mg- and Al-rich granulites of the central Highland Complex,Sri Lanka preserve a range of reaction textures indicative ofa multistage PT history following an ultrahigh-temperaturemetamorphic peak. The granulites contain a near-peak assemblageof sapphirine–garnet–orthopyroxene–sillimanite–quartz–K-feldspar,which was later overprinted by intergrowth, symplectite andcorona textures involving orthopyroxene, sapphirine, cordieriteand spinel. Biotite-rims, kornerupine and orthopyroxene-rimson biotite are considered to be late assemblages. Thermobarometriccalculations yield an estimated PT of at least 1100°Cand 12 kbar for the near-peak metamorphism. Isopleths of Al2O3in orthopyroxene are consistent with a peak temperature above1150°C. The PT path consists of four segments. Initialisobaric cooling after peak metamorphism (Segment A), whichproduced the garnet–sapphirine–quartz assemblage,was followed by near-isothermal decompression at ultrahigh temperature(Segment B), which produced the multiphase symplectites. Furtherisobaric cooling (Segment C) resulted in the formation of biotiteand kornerupine, and late isothermal decompression (SegmentD) formed orthopyroxene rims on biotite. This evolution canbe correlated with similar PT paths elsewhere, but thereare not yet sufficient geochronological and structural dataavailable from the Highland Complex to allow the tectonic implicationsto be fully assessed. KEY WORDS: central Highland Complex; granulites; multistage evolution; Sri Lanka; UHT metamorphism  相似文献   

14.
Abstract The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.  相似文献   

15.
Contact metamorphism has been recognized along a 4 km wide belt adjacent to the shallow‐dipping eastern margin of the Arthursleigh Tonalite, an Early Devonian pluton of the Marulan Batholith, eastern New South Wales. In Ordovician psammitic and pelitic rocks three zones of progressive contact metamorphism range from muscovite + biotite + chlorite assemblages in the outer zone to K‐feldspar + cordierite assemblages adjacent to the pluton and in metasedimentary xenoliths. Retrograde phenomena include extensive replacement of metamorphic minerals by ‘sericite’ and chlorite. Calcareous metasediments adjacent to the tonalite typically contain assemblages of quartz + calcic plagioclase + ferrosalite + sphene, or wollastonite + calcite + diopside with minor grossularite and vesuvianite. Thermal effects in volcanic rocks along the western margin of the pluton are confined to recrystallization of the groundmass.

The regional geology indicates confining pressures of approximately 1 kbar at the time of emplacement of the tonalite. Contact metamorphic temperatures were estimated from two‐feldspar geothermometry to attain a maximum of approximately 590°C for rocks in the innermost zone of the aureole and 700°C for the xenoliths. Fluid compositions attending progressive contact metamorphism were water‐rich (Xco2<0.2) and, during cooling, these fluids probably account for the extensive retrograde hydration observed in the aureole.  相似文献   

16.
A detailed investigation of the compositional variation in garnet has been undertaken in a garnet–pyroxene‐bearing granulite from the high‐grade Gföhl Unit, Moldanubian Zone, Lower Austria. Textural observations, together with the interpretation of the preserved garnet chemistry, enables the recognition of both prograde core and peak metamorphic garnet mantle growth stages, an extremely rare feature in high‐P–T granulite facies rocks. Initial thermobarometric calculations undertaken across whole garnet zoning profiles show how correct interpretation of a zoning profile is essential if the maximum peak metamorphic P–T conditions are to be recovered. The effect of retrograde decompression‐ and cooling‐driven reactions on inclusion and host garnet compositions has also been assessed. The results indicate that caution should be exercised when utilizing inclusion and adjacent garnet compositions for the thermobarometric evaluation of peak metamorphic equilibration conditions. Peak P–T conditions were determined by the TWEEQU thermobarometric method, utilizing the core compositions of matrix phases combined with the interpreted high‐P–T garnet mantle composition, to give 15.6 kbar and 1090 °C, consistent with previously determined results for Moldanubian granulites. Similar high‐P–T estimates are also provided by a re‐evaluation of previously published results for a granulite sample from the same lithological unit, using a modified interpretation of garnet and plagioclase compositional data. The new estimates presented confirm the previously disputed idea that the Gföhl Unit underwent a high‐pressure granulite facies stage and is therefore distinctly different from the underlying tectonostratigraphic units. It is emphasized that any interpretation of the peak metamorphic conditions in high‐grade rocks must be based on detailed petrographic observations combined with a thorough understanding of the co‐existing equilibrium mineral compositions.  相似文献   

17.
Abstract Spinel-quartz-cordierite and spinel-quartz are found as relic prograde assemblages in Fe-rich granulites from the Araku area, Eastern Ghats belt, India. Subsequent reactions produced orthopyroxene + sillimanite in the former association and garnet + sillimanite in the latter. The first reaction is univariant in the FMAS system, but is trivariant in the present case because of the presence of Zn and Fe3+ in spinel. The second reaction also has high variance because of Zn and Fe3+, but also because of the presence of Ca in garnet. Thermobarometry shows that the metamorphic conditions were approximately 950° C and 8.5 kbar and the fo 2 was near the NNO buffer. In Fe-rich bulk compositions and low- P -high- T conditions of metamorphism, two of the univariant reactions around the invariant point [Sa], namely (Sa, Hy) and (Sa, Cd), change topology due to reverse partitioning of Fe-Mg between coexisting garnet and spinel. An alternative partial petrogenetic grid in the system FMAS is constructed for such conditions and is applied satisfactorily to several sapphirine-free spinel granulites. It is shown that bulk composition ( X Fe and Zn) exerts greater control on the stability of spinel + quartz than fo 2. The effect of the presence of Zn and Fe3+ in spinel on the proposed grid is evaluated. Reaction textures in the Araku spinel granulites can be explained from the petrogenetic grid as due to near-isobaric cooling.  相似文献   

18.
The metamorphic history of the Himalayas has been constrained mostly through studies of the ubiquitous metapelitic rocks. Non‐eclogitic metabasite rock lenses that occur intercalated with the metapelites have received little attention and it is not clear whether they share a common metamorphic history. This study reports the results of a petrological study of the metabasite lenses (dm3–m3) from the Lesser Himalayan (LH) and the Higher Himalayan (HH) domains in Sikkim. These have similar bulk chemical compositions and chemical affinities (sub‐alkaline tholeiitic basalts), with plagioclase and amphibole as the dominant mineralogical constituents. Garnet and clinopyroxene occur in some samples depending on small variations in bulk chemistry; and orthopyroxene is developed as a retrograde phase in some rocks. Minor phases are ilmenite, chlorite, titanite and rutile. The rocks were metamorphosed at similar conditions (~9–12 kbar, 800 °C). Minor differences in bulk chemical composition lead to different phase assemblages and mineral chemistry in adjacent metabasite lenses, a feature that is used to demonstrate that metamorphic conditions (peak P–T as well as retrograde P–T path) can be reliably retrieved through a combination of pseudosection analysis and kinetically constrained individual thermobarometry. The peak P–T conditions of the metabasites from this region are independent of the present geographic or tectonic (i.e. within the LH or HH) location of the samples and they differ from the conditions at which the regional metapelites (i.e. metapelites not immediately adjacent to the metabasite lenses) were metamorphosed. Metapelites that are immediately adjacent to the metabasite lenses differ in their appearance, phase assemblage and recorded P–T history from those of the regional metapelites, either because they were emplaced as slivers along with the metabasites, or because they were modified when they came in contact with the metabasites. The retrograde P–T paths of the LH and HH metabasites are different: the HH samples underwent steep decompression whereas the LH followed a more gentle exhumation path. The P–T conditions of peak metamorphism (912 kbar, 800 °C) are commensurate with a thermal perturbation at the base of a crust of average thickness and may be the signature of a widespread (samples found across different regions in the Himalaya) and long‐lasting (e.g. homogeneous garnet compositions) crustal underplating event that occurred during the early stages (?subduction) of the Himalayan orogeny, or earlier if the metamorphism was pre‐Himalayan.  相似文献   

19.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

20.
Mid-Cretaceous granulite gneisses crop out in a narrow belt in the Cucamonga region of the south-eastern foothills of the San Gabriel Mountains, southern California. Interlayered mafic granulites and pelitic, carbonate, calc-silicate and quartzofeldspathic metasediments record hornblende granulite subfacies metamorphism at approximately 8 kbar and 700–800°C. Regional deformation and formation of banded gneisses ceased by c. 108 Ma. although mafic-intermediate magmatism and high-grade metamorphism continued locally as late as c. 88 Ma. Garnet zoning in metapelitic gneisses suggests that peak metamorphism was followed locally by a period of near-isobaric cooling, but this interpretation requires diachronous cooling of the granulite belt which cannot be demonstrated without detailed thermo-chronological data. It is more likely that the entire terrane remained at granulite facies P–T conditions until 88 Ma, followed by rapid uplift associated with juxtaposition against adjacent middle and upper crustal arc terranes. Uplift occurred between c. 88 and 78 Ma at rates of approximately 1–2 km Ma-1. The geotectonic evolution of the Cucamonga granulites is similar to mid-Cretaceous high- P granulites in the Sierra Nevada and Salinian block of central California. Late Cretaceous uplift common to these granulites may provide an important tectonic link between dismembered Mesozoic batholithic terranes in the California Cordillera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号