首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the diffuse emission in the 8–22 keV energy range, elongated parallel to the Galactic plane, and detection of the strong 6.4-keV fluorescent line with ∼ 1 keV equivalent width from some giant molecular clouds (e.g. Sgr B2) in the Galactic Centre region suggest that the neutral matter of these clouds is (or was) illuminated by powerful X-ray radiation, which gave rise to the reprocessed radiation. The source of this radiation remains unknown. A transient source close to the Sgr B2 cloud, or a short outburst of the X-ray emission from a supermassive black hole at the Galactic Centre are the two prime candidates under consideration. We argue that a new generation of X-ray telescopes combining very high sensitivity and excellent energy and angular resolutions would be able to discriminate between these two possibilities when studying time-dependent changes of the morphology of the surface brightness distribution, the equivalent width and the shape of the fluorescent line in Sgr B2 and other molecular clouds in the region. We note also that detection of broad and complex structures near the 6.4-keV line in the spectra of distant AGNs, which are X-ray weak now, may prove the presence of violent activity in the central engines of these objects in the past. Accurate measurements of the line shape may provide information on the time elapsed since the outburst. Proper motion (super- or subluminal) of the fluorescent radiation wave front can give additional information on the location of the source. Observations of the described effects can provide unique information on the matter distribution inside Sgr B2 and other giant molecular clouds.  相似文献   

2.
MERLIN and VLA observations of the galaxy M82 have detected a jet-like feature emanating from one of the compact sources, 44.01+59.6. The proximity of this source to the dynamical centre of M82 led us to suspect that it could be a weak active nucleus rather than an SNR. We imaged this source using the EVN at 15 mas and although it shows a compact shell-like structure which could be consistent with an SNR, we note that the EVN image shows a bright region within the source which is elongated along the jet direction. There are distinct similarities between this source and the Sgr A complex at the centre of our own Galaxy which contains the compact AGN, Sgr A*.  相似文献   

3.
We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3σ upper limits derived for glycine conformer I are  3.7 × 1014 cm−2  in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3σ upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of  7.7 × 1012 cm−2  in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of  3.0 × 1014 cm−2  in Orion-KL and  6.7 × 1014 cm−2  in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the interstellar medium, but have not been able to plausibly assign these transitions to any carrier.  相似文献   

4.
1 INTRODUCTIONFor the behavior of a molecular cloud in subsonic collision with another, Mao et al. (1992)have obtained simplified one-dimension traveling wave solutions for a plane-parallel s1ab. Chang-ing the sign in the transformation of variables in their case, we have the fOllowing results,1 rP = 2 l W op -- 1, (1)1 r =v = -- j W -- ry 1. (2)2 {V(N M)' 2z 2t -- W 1. (2)In Eq. (1), p increases with increasing t. Instability is expected to occur in strongly perturbedmolecular…  相似文献   

5.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   

6.
We report ISO LWS observations towards the star-forming regions W49N, W3(OH) and Sgr B2M in LWS04 mode (high-resolution Fabry–Perot scans). Possible far-infrared laser emission was detected in a water line at 133.55 μm towards W49N, but the spectral resolution was inadequate to establish firmly the nature of the emission. An additional water line was marginally detected in absorption at the 3 σ level, also towards W49N, at 169.74 μm. No OH lines were detected towards Sgr B2M or W3(OH) at either 134.83 or 135.95 μm, either in emission or in absorption.  相似文献   

7.
Possible orbital histories of the Sgr dwarf galaxy are explored. A special-purpose N -body code is used to construct the first models of the Milky Way–Sgr dwarf system in which both the Milky Way and the Sgr dwarf are represented by full N -body systems and followed for a Hubble time. These models are used to calibrate a semi-analytic model of the Sgr dwarf's orbit that enables us to explore a wider parameter space than is accessible to the N -body models. We conclude that the extant data on the Sgr dwarf are compatible with a wide range of orbital histories. At one extreme the Sgr dwarf initially possesses ∼1011 M and starts from a Galactocentric distance R D(0)≳200 kpc. At the other extreme the Sgr dwarf starts with ∼109 M and R D(0)∼60 kpc, similar to its present apocentric distance. In all cases the Sgr dwarf is initially dark matter dominated and the current velocity dispersion of the Sgr dwarf's dark matter is tightly constrained to be 21±2 km s−1. This number is probably compatible with the smaller measured dispersion of the Sgr dwarf's stars because of (i) the dynamical difference between dark and luminous matter, and (ii) velocity anisotropy.  相似文献   

8.
We report mapping observations of a 35 pc × 35 pc region covering the Sgr B2 molecular cloud complex in the 13CO (3-2) and the CS (7-6) lines using the ASTE 10 m telescope with high angular resolution. The central region was mapped also in the C18O (3-2) line. The images not only reproduce the characteristic structures noted in the preceding millimeter observations, but also highlight the interface of the molecular clouds with a large velocity jump of a few tens of km s−1. These new results further support the scenario that a cloud–cloud collision has triggered the formation of massive cloud cores, which form massive stars of Sgr B2. Prospects of exciting science enabled by ALMA are discussed in relation to these observations.  相似文献   

9.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   

10.
We have imaged a region of ∼ 5′ extent surrounding Sgr A* in the HI 21 cm-line absorption using the Very Large Array. A Gaussian decomposition of the optical depth spectra at positions within ∼ 2′ (∼ 5 pc at 8.5 kpc) of Sgr A* detects a wide line underlying the many narrow absorption lines. The wide line has a mean peak optical depth of 0.32 ± 0.12 centered at a mean velocity of V1sr = −4 ± 15 km s{−1}. The mean full width at half maximum is 119 ± 42 km s−1. Such a wide line is absent in the spectra at positions beyond ∼ 2′ from Sgr A*. The position-velocity diagrams in optical depth reveal that the wide line originates in various components of the circumnuclear disk (radius ∼ 1.3′ ) surrounding Sgr A*. These components contribute to the optical depth of the wide line in different velocity ranges. The position-velocity diagrams do not reveal any diffuse feature which could be attributed to a large number of HI clouds along the line of sight to Sgr A*. Consequently, the wide line has no implications either to a global population of shocked HI clouds in the Galaxy or to the energetics of the interstellar medium as was earlier thought.  相似文献   

11.
The compact dark objects with very large masses residing at the centres of galaxies are believed to be black holes. Due to the gravitational lensing effect, they would cast a shadow larger than their horizon size over the background; the shape and size of this shadow can be calculated. For the supermassive black hole candidate Sgr A*, this shadow spans an angular size of about 50 μas, which is under the resolution attainable with the current astronomical instruments. Such a shadow image of Sgr A* will be observable at about 1 mm wavelength, considering the scatter broadening by the interstellar medium. By simulating the black hole shadow image of Sgr A* with the radiatively inefficient accretion flow model, we demonstrate that analysing the properties of the visibility function can help us determine some parameters of the black hole configuration, which is instructive for the submillimetre Very Long Baseline Interferometry (VLBI) observations of Sgr A* to be made in the near future.  相似文献   

12.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

13.
银河中心为我们提供了一个唯一的天体物理实验室来用以研究各式各样的天体物理过程。在文中 ,我们总结和归纳了关于SgrA 观测的最新结果 ,主要涉及源的结构和在流量密度方面的变化。SgrA 现象代表着在低光度活动星系核中围绕一个超大质量黑洞的低辐射率的吸积盘外流的典型例子。从SgrA 观测得到的许多天体物理中悬而未决的问题对现存的天体物理理论是一个挑战。对SgrA 的最新理论模型也作了综述。  相似文献   

14.
Due to a combination of rapid expansion and changes in chemical composition, the optical spectrum of V4334 Sgr changed rapidly between discovery in 1996 Februaryand extinction during 1999. As one of the most rapidly evolving stars ever observed, optical spectroscopy must answer a range of important questions.The development of the optical spectrum and its implications are discussedthrough a review of published literature. A previously unpublished sequence of spectra from near discovery through 1996 demonstrates the thermal evolution of V4334 Sgr, while detailed analysis of an unpublished echelle spectrumobtained in 1996 May raises questions about the model atmospheres used to date.As a result, requirements for future models of the atmosphere of V4334 Sgr are analysed. The future evolution of V4334 Sgr and the dispersion of its dustycocoon are briefly discussed.  相似文献   

15.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

16.
Recent VLBA observation indicates the existence of an elongated (jet) structure in the compact radio source Sgr A*. This is hard to explain in the context of advection-dominated accretion flow (ADAF) model for this source. On the other hand, the mass accretion rate favoured by ADAF is 10–20 times smaller than that favoured by the hydrodynamical simulation based on Bondi capture. If the latter were adopted, the predicted radio flux would significantly exceed the observation. A similar situation exists in the case of nearby giant ellipticals, where the canonical ADAF model – the widely assumed standard model for these sources – also significantly overpredicts the radio flux. Based on these facts, in this paper we propose a truncated ADAF model for Sgr A* and three ellipticals M87, NGC 4649 and NGC 4636. We assume that the accretion disc is truncated at a certain radius R tr within which the jet forms by extracting the energy of the disc. The radio flux is greatly suppressed owing to the radiative truncation of the disc and the fits to the observational data are excellent. For example, for Sgr A*, the model fits the observational spectrum very well from radio including the 'excess' below the break frequency to hard X-ray under a high accretion rate near the simulation value, and the predicted size-frequency relationship is also in excellent agreement with the observation; for M87, the predicted upper limit of the jet location is 24 R g, in excellent agreement with the observational result that the jet is formed on scales smaller than 30 R g, and the ≈20 per cent variability at ∼1 keV – which is hard to explain in another model that succeeded in explaining the low radio flux of M87 – is also marginally interpreted. The success of the model supplies possible evidence for the disc rather than the hole origin for the powering of jets.  相似文献   

17.
Absorption lines of MgH and CaH N  = 1 − 0 transitions were searched for in foreground molecular clouds towards the continuum sources associated with Sgr B2 (M) and W49A (N). None of these lines was detected with our sensitivity level of ∼20 mK. Millimetric absorption lines of MgO, MgOH, CaO and CaOH were also searched for towards Sgr B2 (M) without success. The fractional abundances relative to molecular hydrogen are ≲ 1.0 × 10−11 for MgH, ≲ 7.9 × 10−13 for MgO, ≲ 1.6 × 10−10 for MgOH, ≲ 1.6 × 10−9 for CaH, ≲ 2.0 × 10−12 for CaO, and ≲ 2.5 × 10−10 for CaOH, respectively. The low abundances measured in absorption indicate that a significant fraction of interstellar magnesium and calcium cannot be tied up in their monohydrides, monoxides and monohydroxides. The low abundance of MgH also implies that grain-surface chemistry involving magnesium is not efficient and that magnesium is depleted on to grains to a factor of ≳ 102.5 in well-shielded molecular clouds.  相似文献   

18.
The radio source Sgr A and neighbouring features have been mapped at a frequency of 843 MHz with a beamwidth of 43 × 87 arcsec. Comparisons have been made with published maps of comparable resolution at different frequencies in order to differentiate thermal and nonthermal regions. The arc feature to the north of Sgr A appears to consist of low-temperature ionized hydrogen and to extend partly over Sgr A itself causing patchy absorption at low frequencies; there is some evidence that the hydrogen in the arc has been expelled from the galactic nucleus. Previous suggestions that Sgr A East is a supernova remnant have been examined and the interpretation is found to be quite likely, but not compelling. The diffuse component of Sgr A West appears to be due entirely to ionized hydrogen surrounding the nucleus.  相似文献   

19.
VLA observations at 6 cm have been obtained for three hydrogen-deficient objects υ Sgr, V 348 Sgr, and A bell 58. A bell 58 was also observed at 2 cm. Only upper limits to the flux density could be set for these sources. A new radio source at 6 cm was found in the field of υ Sgr. The upper limit for 6 cm flux density of V348 Sgr sets an upper limit to its reddening asE(B–V) ≤ 0.65. The hydrogen deficient planetary nebula A 58 shows much lower radio flux than expected from the infrared-radio flux density relationship of planetary nebulae. National Radio Astronomy Observatory’s Very Large Array is operated by Associated Universities Inc. under contract with National Science Foundation, USA.  相似文献   

20.
We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature T(rot) = 18 K and a molecular column density N(c-C2H4O) = 3.3 x 10(14) cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10(-11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号