首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
New mid-infrared spectra are presented of a number of oxygen-rich evolved stars which have IRAS LRS (Low Resolution Spectrometer) spectra that were classified as showing SiC emission. Two of the sources, IRC−20445 and IRC−20461, show the unidentified infrared (UIR) bands superposed on silicate emission features. Both objects have been classified as M supergiants. Several other sources show three-component spectra, with peaks at 10, 11 and 13 μm. The 13-μm source FI Lyr shows a narrow emission feature at 19 μm. Emission by oxide grains may be responsible for the 11-, 13- and 19-μm features. One object, IRC−20455, shows a self-absorbed silicate feature. There is no clear evidence for SiC emission in any of the spectra: the LRS spectra were erroneously classified as showing SiC emission because of the relatively strong 11-μm emission.  相似文献   

3.
The dust shell around the evolved star HD 179821 has been detected in scattered light in near-IR imaging polarimetry observations. Here, we subtract the contribution of the unpolarized stellar light to obtain an intrinsic linear polarization of between 30 and 40 per cent in the shell that seems to increase with radial offset from the star. The J - and K -band data are modelled using a scattering code to determine the shell parameters and dust properties. We find that the observations are well described by a spherically-symmetric distribution of dust with an r −2 density law, indicating that when mass-loss was occurring, the mass-loss rate was constant. The models predict that the detached nature of a spherically-symmetric, optically-thin dust shell, with a distinct inner boundary, will only be apparent in polarized flux. This is in accordance with the observations of this and other optically-thin circumstellar shells, such as IRAS 17436+5003. By fitting the shell brightness we derive an optical depth to the star that is consistent with V -band observations and that, assuming a distance of 6 kpc, gives an inner-shell radius of     , a dust number density of     at r in and a dust mass of     . We have explored axisymmetric shell models but conclude that any deviations from spherical symmetry in the shell must be slight, with an equator-to-pole density contrast of less than 2:1. We have not been able to fit simultaneously the high linear polarizations and the small     colour excess of the shell and we attribute this to the unusual scattering properties of the dust. We suggest that the dust grains around HD 179821 either are highly elongated or consist of aggregates of smaller particles.  相似文献   

4.
5.
Nova Cassiopeiae 1993 (V705 Cas) was an archetypical dust-forming nova. It displayed a deep minimum in the visual light curve, and spectroscopic evidence for carbon, hydrocarbon and silicate dust. We report the results of fitting the infrared (IR) spectral energy distribution (SED) with the dusty code, which we use to determine the properties and geometry of the emitting dust. The emission is well described as originating in a thin shell whose dust has a carbon:silicate ratio of 2:1 by number (  ∼1.26:1  by mass) and a relatively flat size distribution. The 9.7- and 18-μm silicate features are consistent with freshly condensed dust and, while the lower limit to the grain size distribution is not well constrained, the largest grains have dimensions  ∼0.06 μm  ; unless the grains in V705 Cas were anomalously small, the sizes of grains produced in nova eruptions may previously have been overestimated in novae with optically thick dust shells. Laboratory work by Grishko & Duley may provide clues to the apparently unique nature of nova unidentified infrared (UIR) features.  相似文献   

6.
We present 7 mm and 3.5 cm wavelength continuum observations towards the Herbig AeBe star HD169142 performed with the Very Large Array (VLA) with an angular resolution of ≃1 arcsec. We find that this object exhibits strong (≃4.4 mJy), unresolved (≲1 arcsec) 7 mm continuum emission, being one of the brightest isolated Herbig AeBe stars ever detected with the VLA at this wavelength. No emission is detected at 3.5 cm continuum, with a 3σ upper limit of ≃0.08 mJy. From these values, we obtain a spectral index α≳ 2.5 in the 3.5 cm to 7 mm wavelength range, indicating that the observed flux density at 7 mm is most likely dominated by thermal dust emission coming from a circumstellar disc. We use available photometric data from the literature to model the spectral energy distribution (SED) of this object from radio to near-ultraviolet frequencies. The observed SED can be understood in terms of an irradiated accretion disc with low mass accretion rate,     , surrounding a star with an age of ≃10 Myr. We infer that the mass of the disc is ≃0.04 M, and is populated by dust grains that have grown to a maximum size of 1 mm everywhere, consistent with the lack of silicate 10 μm emission. These features, as well as indications of settling in the wall at the dust destruction radius, led us to speculate that the disc of HD169142 is in an advanced stage of dust evolution, particularly in its inner regions.  相似文献   

7.
8.
9.
10.
11.
12.
JHKL observations of the mass-losing carbon Mira variable IRAS 15194–5115 (II Lup) extending over about 18 yr are presented and discussed. The pulsation period is 575 d and has remained essentially constant over this time span. The star has undergone an extensive obscuration minimum during this time. This is complex and, like such minima in similar objects (e.g. R For), does not fit the model predictions of a simple long-term periodicity. Together with the high-resolution observations of Lopez et al., the results suggest that the obscuration changes are caused by the formation of dust clouds of limited extent in the line of sight. This is an R Coronae Borealis-type (RCB-type) model. The effective reddening law at J and H is similar to that found for R For.  相似文献   

13.
14.
We have investigated the optical properties of the carbon dust grains in the envelopes around carbon-rich asymptotic giant branch stars, paying close attention to the infrared observations of the stars and the laboratory-measured optical data of the candidate dust grain materials. We have compared the radiative transfer model results with the observed spectral energy distributions of the stars including IRAS Point Source Catalog and IRAS Low Resolution Spectrograph data. We have deduced an opacity function of amorphous carbon dust grains from model fitting with infrared carbon stars. From the opacity function, we have derived the optical constants of the AMC grains. The optical constants satisfy the Kramers–Kronig relation and produce the opacity function that fits the observations of infrared carbon stars better than previous works in the wide wavelength range 1–1000 μm. We have used simple mixtures of the AMC and silicon carbide grains for modelling. We have compared the contributions that AMC and SiC grains make to the opacity for the cases of simple mixtures of them and spherical core–mantle type grains consisting of a SiC core and an AMC mantle .  相似文献   

15.
We present new infrared photometry of the WC7-type Wolf–Rayet star HD 192641 (WR 137) from 1985 to 1999. These data track the cooling of the dust cloud formed in the 1982–84 dust-formation episode from 1985 to 1991, the increase of the infrared flux from 1994.5 to a new dust-formation maximum in 1997 and its subsequent fading. From these and earlier data we derive a period of 4765±50 d (13.05±0.15 yr) for the dust-formation episodes. Between dust-emission episodes, the infrared spectral energy distribution has the form of a power law, λF λ ∝ λ −1.86. The rising branch of the infrared light curve (1994–97) differs in form from that of the episodic dust-maker WR 125. Time-dependent modelling shows that this difference can be attributed to a different time dependence of dust formation in WR 137, which occurred approximately ∝ t 2 until maximum, whereas that of WR 125 could be described by a step function, akin to a threshold effect. For an adopted distance of 1.6 kpc, the rate of dust formation was found to be 5.0×10−8 M yr−1 at maximum, accounting for a fraction f C≈1.5×10−3 of the carbon flowing in the stellar wind. The fading branches of the light curves show evidence for secondary 'mini-eruptions' in 1987, 1988 and 1990, behaviour very different from that of the prototypical episodic dust-maker HD 193793 (WR 140), and suggesting the presence in the WR 137 stellar wind of large-scale structures that are crossed by the wind–wind collision region.  相似文献   

16.
Extended emission components are clearly found in the IRAS scan data of optically visible oxygen-rich AGB stars which show no 10µm silicate band feature in the IRAS LRS spectra but a strong infrared excess in the IRAS photometric data. It is most likely that these stars really have their circumstellar dust envelopes, which are detached from the central stars, indicating a halting of mass loss for a significant period.  相似文献   

17.
18.
19.
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis   a = 7.58 ± 0.24 mas  , an axis ratio   r = 0.39 ± 0.03  and a position angle  θ= 35°± 2°  .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号