首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper investigates the equinoctial orbit elements for the two-body problem, showing that the associated matrices are free from singularities for zero eccentricities and zero and ninety degree inclinations. The matrix of the partial derivatives of the position and velocity vectors with respect to the orbit elements is given explicitly, together with the matrix of inverse partial derivatives, in order to facilitate construction of the matrizant (state transition matrix) corresponding to these elements. The Lagrange and Poisson bracket matrices are also given. The application of the equinoctial orbit elements to general and special perturbations is discussed.This work was initiated while the second author was a Postdoctoral Scholar in the School of Engineering and Applied Science, University of California, Los Angeles.  相似文献   

3.
This paper develops a nonlinear analytic solution for satellite relative motion in J2-perturbed elliptic orbits by using the geometric method that can avoid directly solving the complex differential equations. The differential equinoctial elements (DEEs) are used to remove any singularities for zero-eccentricity or zero-inclination orbits. Based on the relationship between the relative states and the DEEs, state transition tensors (STTs) for transforming the osculating DEEs and propagating the mean DEEs have been derived. The formulation of these STTs has been split into a set of vector and matrix operations, which avoids directly expanding the complex second-order terms, and thus, the obtained STTs could be easy-to-understand and easy-to-code. Numerical results show that the proposed nonlinear solution is valid for zero-eccentricity and zero-inclination reference orbit and is more accurate than the previous linear or nonlinear methods for the long-term prediction of satellite relative motion.  相似文献   

4.
Perturbation equations of the elements a, e, s, Ms, Ψssof Vinti's intermediate orbit are derived here correct to the second-order. Poisson terms have been eliminated from these equations.  相似文献   

5.
This paper concerns with the study of KS uniformly regular canonical elements with Earth's oblateness. These elements, ten in number, are all constant in the unperturbed motion and even in the perturbed motion, the substitution is straightforward and elementary due to the transformation laws being explicit and closed expression. By utilizing the recursion formulas of Legendre's polynomials, we are able to include any number of Earth's zonal harmonics J n in the package and also economize the computations. A fixed step-size fourth-order Runge-Kutta-Gill method is employed for numerical integration of the canonical equations.Utilizing 5 test cases covering a large range of semimajor axis and eccentricity, we have carried out computations to study the effects of Earth's zonal harmonics (up to J 36) and integration step-size variation. Bilinear relations and energy equation are used for checking the accuracies of numerical integration. From the application point of view, the package is utilized to study the behaviour of 900 km height near-circular sun-synchronous satellite orbit over a longer duration of 220 days time (nearly 3078 revolutions) and the necessity of including more number of Earth's zonal harmonic terms is noticed. The package is also used to study the effect of higher zonal harmonics on three 900 km height near-circular orbits with inclinations of 60, 63.2, and 65 degrees, by including Earth's zonal harmonics up to J 24. The mean eccentricity (e m) is found to have long-periods of 459.6, 6925.1 and 1077.6 days, respectively. Sharp changes in the variation of m near the minima to em are noticed. The values of m are found to be very near to +-90 degrees at the extrema of em. The same orbit is employed to study the effect of variation of inclination from 0 to 180 degrees on long-period (T) of eccentricity with J 2 to J 24 terms. T is found to increase rapidly as we proceed towards the critical inclinations.  相似文献   

6.
A new set of canonical elements is introduced into the field of KS-theory. The close relationship of these elements with a set of elements proposed by Scheifele (1970) is analysed. Some applications are outlined.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

7.
A new nonsingular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed for long term motion in terms of the KS uniformly regular canonical elements by a series expansion method, by assuming the atmosphere to be symmetrically spherical with constant density scale height. The series expansions include up to third order terms in eccentricity. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semi major axis and eccentricity up to 1000 revolutions, obtained with the present solution, with KS elements analytical solution and Cook, King-Hele and Walker's theory with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

8.
If a satellite orbit is described by means of osculating Jacobi α's and β's of a separable problem, the paper shows that a perturbing forceF makes them vary according to $$\dot \alpha _\kappa = {\text{F}} \cdot \partial {\text{r/}}\partial \beta _k {\text{ }}\dot \beta _k = {\text{ - F}} \cdot \partial {\text{r/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A1)}}$$ Herer is the position vector of the satellite andF is any perturbing force, conservative or non-conservative. There are two special cases of (A1) that have been previously derived rigorously. If the reference orbit is Keplerian, equations equivalent to (A1), withF arbitrary, were derived by Brouwer and Clemence (1961), by Danby (1962), and by Battin (1964). IfF=?gradV 1(t), whereV 1 may or may not depend explicitly on the time, Equations (A1) reduce to the well known forms (e.g. Garfinkel, 1966) $$\dot \alpha _\kappa = {\text{ - }}\partial V_1 {\text{/}}\partial \beta _k {\text{ }}\dot \beta _k = \partial V_1 {\text{/}}\partial \alpha _k ,{\text{ (}}k = 1,2,3).{\text{ (A2)}}$$ holding for all separable reference orbits. Equations (A1) can of course be guessed from Equations (A2), if one assumes that \(\dot \alpha _k (t)\) and \(\dot \beta _k (t)\) depend only onF(t) and thatF(t) can always be modeled instantaneously as a potential gradient. The main point of the present paper is the rigorous derivation of (A1), without resort to any such modeling procedure. Applications to the Keplerian and spheroidal reference orbits are indicated.  相似文献   

9.
Analytical solutions using KS elements are derived. The perturbation considered is the Earth's zonal harmonic J 2. The series expansions include terms of fourth power in the eccentricity. Only two of the nine KS element equations are integrated analytically due to the reasons of symmetry. The analytical solution is suitable for short-term orbit computations. Numerical studies show that reasonably good estimates of the orbital elements can be obtained in one step of 10 to 30 degrees of eccentric anomaly for near-Earth orbits of moderate eccentricity. For application purposes, the analytical solution can be effectively used for onboard computation in the navigation and guidance packages, where the modelling of J 2 effect becomes necessary.  相似文献   

10.
Analytical theory for short-term orbit motion of satellite orbits with Earth's zonal harmonicsJ 3 andJ 4 is developed in terms of KS elements. Due to symmetry in KS element equations, only two of the nine equations are integrated analytically. The series expansions include terms of third power in the eccentricity. Numerical studies with two test cases reveal that orbital elements obtained from the analytical expressions match quite well with numerically integrated values during a revolution. Typically for an orbit with perigee height, eccentricity and inclination of 421.9 km, 0.17524 and 30 degrees, respectively, maximum differences of 27 and 25 cm in semimajor axis computation are noted withJ 3 andJ 4 term during a revolution. For application purposes, the analytical solutions can be used for accurate onboard computation of state vector in navigation and guidance packages.  相似文献   

11.
The paper presents a modified genetic algorithm called adapted genetic algorithm with adjusting population size (AGA-POP) for precise determination the orbital elements of binary stars. The proposed approach is a simple, robust way that can be considered to be a new member in the class of self organizing genetic algorithms. The proposed AGA-POP is applied on the star η Bootis of MK type G0 IV to find a set of optimal orbital elements. This leads to obtain the best fitting of Keplerian and phase curves. The modified method is compared with other different methods such as standard genetic algorithm, adapted genetic algorithm (AGA) and least square methods. Simulation results show the effectiveness of using AGA-POP compared with other different classic genetic algorithms in reducing the computation time. Also, better performances have been achieved when using the proposed technique.  相似文献   

12.
The eclipsing system of W UMa-type TZ Bootis has been examined on the basis of six light curves analyzed by the means of the Fourier techniques. An optimal resulting set of geometric elements for the system is obtained from both minima, through there magnitudes variations during the periods 1967, 1969, 1974, 1976, 1978, and 1980.The intrinsic variability of the system has been discussed in the light of the behaviour of the light curves.  相似文献   

13.
14.
《Chinese Astronomy》1979,3(1):24-30
It is efficient to compute the long-period and secular perturbations by numerical intergration and to use the classical analytical solution for the short-period perturbations.  相似文献   

15.
We describe a simple algorithm for classifying orbits into orbit families. This algorithm works by finding patterns in the sign changes of the principal coordinates. Orbits in the logarithmic potential are studied as an application; we classify orbits into boxlet families and examine the influence of the core radius on the set of stable orbit families.  相似文献   

16.
17.
Photoelectric radial-velocity measurements show that the eighth-magnitude star HD 115968 is a spectroscopic binary with a period of 16.195 days. The star has a large proper motion, and is unlikely to have the luminosity corresponding to the spectral type of G8 III favoured by Zaitseva. It is most probably a late-G dwarf.  相似文献   

18.
Photoelectric radial-velocity measurements show that 26 Comae is a spectroscopic binary with a very eccentric orbit and a period of 972 days. An erratum to this article is available at .  相似文献   

19.
20.
A new method of initial orbit determination   总被引:2,自引:0,他引:2  
Up to now we have been dealing with the construction of entirely analytical planetary theories such as VSOP82 (Bretagnon, 1982) and TOP82 (Simon, 1983). These theories take into account the whole of the Newtonian perturbations of nine point masses: the Sun, the Earth-Moon barycentre, the planets Mercury, Venus, Mars, Jupiter, Saturn, Uranus and Neptune. They also take into account perturbations due to some minor planets, to the action of the Moon and the relativistic effects. The perturbations of these last three types are in a very simple way under analytical form but they considerably increase the computations when introduced in the numerical integration programs.In the present paper we thus study a solution in which the Newtonian perturbations for the ten point masses are treated through numerical integration, the other perturbations being analytically added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号