首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combined set of U–Pb and Lu–Hf in situ laser ablationICP-(MC)-MS zircon analyses were obtained from orthogneissesand granitoids in the Central Zone of the Limpopo Belt, whichcomprises the Beit Bridge and Mahalapye complexes. The resultsindicate that by combining the two isotope systems primary magmaticzircon domains can be distinguished from those formed duringlater metamorphic events, even if the distinct zircon domainsunderwent multiple Pb loss and the texture–age relationships,as obtained by cathodoluminescence images and U–Pb analyses,are ambiguous. Furthermore, the applied technique allows distinctionof zircon grains formed in juvenile magmas from those generatedby melting of older continental crust or affected by substantialcrustal contamination. The combined U–Pb and Lu–Hfdata reveal that the Sand River gneiss suite of the Beit BridgeComplex was emplaced at 3283 ± 8 Ma and formed from meltingof an older Archaean crust, which was derived from a depletedmantle source at around 3·65 Ga. The hafnium model age(TDMHf) is significantly older than those obtained from zirconsfrom numerous Neoarchaean granitoids of the Beit Bridge Complex,comprising the Singelele gneiss (2647 ± 12 Ma), the Bulaigranite (2612 ± 7 Ma), the Regina gneiss (2649 ±9 Ma) and two samples of the Zanzibar gneiss (2613 ±6 Ma). These granitoids show initial Hf(t) values between +0·5 and –7·1, which correspond to initialTDMHf between 3·46 and 3·01 Ga. These variableTDMHfinitial and Hf(t)initial values are interpreted to be theresult of different mixtures of reworked 3·65 Ga Palaeoarchaeancrust with juvenile magmas extracted from the depleted mantleduring the Neoarchaean at 2·65 Ga. This conclusion issupported by results obtained from the Mahalapye Complex, whichwas affected by migmatization and granite intrusions duringthe Palaeoproterozoic at 2·02–2·06 Ga. TheMokgware granite (2019 ± 9 Ma) contains zircon xenocrystswith Pb–Pb ages of 2·52–2·65 Ga and2·93 Ga and hafnium model ages of 3·0–3·4Ga, indicating that this granite is derived from remelting ofArchaean crust. In contrast, uniform TDMHfinitial ages of 2·61–2·67Ga obtained from a diorite gneiss (2061 ± 6 Ma) of theMahalapye Complex indicate that its protolith may have beenformed from remelting of a Neoarchaean juvenile crust. VariableHf(t)initial values from –3·7 to +6·3 ofzircon cores (2711 ± 11 Ma) in an adjacent leucosomealso support a model of mixing of juvenile mantle derived matterwith older crust in the Neoarchaean. KEY WORDS: Archaean; Palaeoproterozoic; Limpopo Belt; zircon, U–Pb dating; Lu–Hf isotopes; LA-ICP-MS  相似文献   

2.
The Liov Granulite Massif differs from neighbouring granulitebodies in the Moldanubian Zone of southern Bohemia (Czech Republic)in including a higher proportion of intermediate–maficand orthopyroxene-bearing rocks, associated with spinel peridotitesbut lacking eclogites. In addition to dominantly felsic garnetgranulites, other major rock types include quartz dioritic two-pyroxenegranulites, tonalitic granulites and charnockites. Minor bodiesof high-pressure layered gabbroic garnet granulites and spinelperidotites represent tectonically incorporated foreign elements.The protoliths of the mafic–intermediate granulites (quartz-dioriticand tonalitic) crystallized 360–370 Ma ago, as indicatedby laser ablation inductively coupled plasma mass spectrometryU–Pb ages of abundant zircons with well-preserved magmaticzoning. Strongly metamorphically recrystallized zircons giveages of 330–340 Ma, similar to those of other Moldanubiangranulites. For the overwhelming majority of the Liov granulitespeak metamorphic conditions probably did not exceed 800–900°Cat 4–5 kbar; the equilibration temperature of the pyroxenegranulites was 670–770°C. This is in sharp contrastto conditions of adjacent contemporaneous Moldanubian granulites,which are characterized by a distinct HP–HT signature.The mafic–intermediate Liov granulites are thought tohave originated during Viséan metamorphic overprintingof metaluminous, medium-K calc-alkaline plutonic rocks thatformed the mid-crustal root of a Late Devonian magmatic arc.The protolith resembled contemporaneous calc-alkaline intrusionsin the European Variscan Belt. KEY WORDS: low-pressure granulites; geothermobarometry; laser-ablation ICP-MS zircon dating; whole-rock geochemistry; Sr–Nd isotopes; Moldanubian Zone  相似文献   

3.
In north-east Brazil, Archean and Paleoproterozoic cratonicblocks are enclosed within a network of Brasiliano-age (0·7–0·55Ga) metasedimentary foldbelts. The unfoliated Coronel JoãoSá granodiorite pluton, which contains magmatic epidoteand strongly resorbed clinopyroxene, intrudes the SergipanoFoldbelt. Zircons yield a concordant U–Pb crystallizationage of 625 ± 2 Ma; titanite ages are approximately 621Ma. Discordant zircons suggest inheritance from at least twomagma sources of ages <1·8 and >2·2 Ga.Model calculations based on diffusion parameters and Rb–Srisotope data from separated minerals indicate that the plutoncooled at a rate of 36°C/Myr. Whole-rock element compositionsand initial Sr–Nd isotopic compositions that are heterogeneouson all length scales suggest magma mixing. Trace-element concentrationsand Nd isotope data argue against a contribution from a contemporaneousmantle-derived magma. Values of magmatic Nd (at 625 Ma) resemblecontemporary Nd for local supracrustal rocks and basement, compatiblewith anatexis of a crustal source. In north-east Brazil, cratonicblocks could have amalgamated with foldbelts that originatedas: (1) a mosaic of island arcs and arc basins (traditionalallochthonous model), or as (2) extensional continental sedimentarybasins (but not oceanic crust) later involved in collision (autochthonousmodel). The Coronel João Sá isotopic and chemicaldata support an autochthonous origin. KEY WORDS: Brasiliano Orogeny; granodiorite pluton; Rb–Sr isotopes, Sm–Nd isotopes; U–Pb isotopes, magma cooling rate  相似文献   

4.
In the Speik Complex (Eastern Alps, Austria), highly melt-depleted,metamorphosed harzburgites with abundant pods and layers ofchromitite are interlayered with a suite of metamorphosed orthopyroxenites,clinopyroxenites and gabbros. Coarse-grained orthopyroxenitesoccur as centimetre- to metre-wide veinlets and pods, but alsoas intrusive plugs several tens of metres wide. Intimately associatedmetaclinopyroxenite and metagabbro are present as bodies upto several metres thick at a distinct stratigraphic level withinthe complex. In the ultramafic rocks, relict magmatic olivine,orthopyroxene, clinopyroxene and spinel have been overprintedby a metamorphic assemblage of forsterite, diopside, tremolite,anthophyllite, chlorite, serpentine, talc and Cr–Fe-richspinel. Hornblende, epidote, zoisite and chlorite dominate themetamorphic paragenesis in metagabbros, in addition to rarerelicts of clinopyroxene and two phases of Ca-rich garnet. Thepolymetamorphic evolution of the Speik Complex includes rarelypreserved pre-Variscan (400 Ma) eclogite-facies conditions,Variscan (330 Ma) amphibolite-facies conditions (600–700°C,>5 kbar) and Eoalpine (100 Ma) greenschist- to amphibolite-faciesconditions reaching 550°C and 7–10 kbar. Orthopyroxenitesare characterized by high concentrations of SiO2, MgO and Cr,and by U-shaped chondrite-normalized rare earth element (REE)patterns similar to those of their harzburgite hosts. The REEpatterns of the clinopyroxenites are flat to slightly enrichedin light REE. Metagabbro compositions are variable, but generallycharacterized by low SiO2 and high mg-numbers (61–78).Their REE patterns all have GdN/YbN > 1; some samples havelarge positive Eu anomalies implying the original presence ofcumulus plagioclase. In the orthopyroxenites, clinopyroxenitesand some peridotites, Pt, Pd and Re are distinctly enrichedcompared with Os, Ir and Ru, whereas most harzburgites haveunfractionated to slightly fractionated platinum-group element(PGE) patterns with respect to average upper mantle. The Re–Osisotope compositions of the pyroxenites define an errorchronat 550 ± 17 Ma and a supra-chondritic 187Os/188Os of0·179 ± 0·003. An isochron age of 554 ±37 Ma with Nd(i) +0·7 is indicated by the Sm–Ndisotope compositions of whole-rock pyroxenite and gabbro samples,whereas the harzburgites plot on an errorchron of 745 ±45 Ma and Nd(i) +6. The pyroxenites and gabbros probably representa cogenetic suite of magmatic dykes intruded into uppermost,highly depleted, suboceanic mantle below the crust–mantletransition zone in an oceanic basin close to the northwesternmargin of Gondwana. KEY WORDS: pyroxenite; metagabbro; geochemistry; Re–Os isotopes; Sm–Nd isotopes  相似文献   

5.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

6.
This study presents new geochemical (major and trace element,Nd–Sr isotope) and U–Pb zircon, monazite, titaniteand rutile data for various rock types (eclogite, high-pressuregranulite, amphibolite, orthogneiss, leucosome) of the high-grademetamorphic Mariánské Lázn  相似文献   

7.
本文首次测得江西弋阳中元古界铁沙街组石英角斑岩SHRIMP锆石U-Pb年龄为1154±5 Ma。测定发现铁沙街组石英角斑岩和流纹岩高SiO_2(73.53%~81.11%),低CaO(0.06%~0.11%)、Na_2O(0.05%~2.77%),K_2O为2.16%~6.43%和Al_2O_3为11.06%~13.96%;在Zr/TiO_2—Nh/Y微量元素分类图解上绝大多数样品落于碱性流纹岩区域;在SiO_2—FeO/MgO图解中绝大多数样品位于钙碱性岩石系列区域;稀土总量(ΣREE)为182.48×10~(-6)~818.82×10~(-6),轻稀土较富集,铕明显负异常(δEu=0.20~O.45);在原始地幔标准化图解中,表现出亏损大离子亲石元素(Ba、Sr、Ti、P)和富集高场强元素(Nb、Ta、La、Ce、Zr、Hf、Sm)。铁沙街组石英角斑岩和流纹岩的锆石的ε_(Hf)(t)值分别为-6.1~5.3和-2.3~4.8,两阶段Hf模式年龄分别为1653~2380 Ma和1675~2132 Ma。锆石Hf同位素特征显示铁沙街组石英角斑岩、流纹岩的成因主要为岩石圈拆沉,深部地幔物质上涌,并由此造成的古元古代晚期下地壳物质的部分熔融。综上认为,铁沙街组石英角斑岩和流纹岩形成于中元古界后造山阶段的板内环境,可能与华夏陆块板内裂谷减薄开裂阶段的地幔物质上涌有关。  相似文献   

8.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

9.
In situ laser ablation inductively coupled plasma mass spectrometryanalysis of trace elements, U–Pb ages and Hf isotopiccompositions of magmatic zircon from I- and S-type granitoidsfrom the Lachlan Fold Belt (Berridale adamellite and Kosciuskotonalite) and New England Fold Belt (Dundee rhyodacite ignimbrite),Eastern Australia, is combined with detailed studies of crystalmorphology to model petrogenetic processes. The presented examplesdemonstrate that changes in zircon morphology, within singlegrains and between populations, generally correlate with changesin trace element and Hf-isotope signatures, reflecting the mixingof magmas and changes in the composition of the magma throughmingling processes and progressive crystallization. The zircondata show that the I-type Kosciusko tonalite was derived froma single source of crustal origin, whereas the S-type Berridaleadamellite had two distinct sources including a significantI-type magma contribution. Complex morphology and Hf isotopevariations in zircon grains indicate a moderate contributionfrom a crustal component in the genesis of the I-type Dundeerhyodacite. The integration of data on morphology, trace elementsand Hf isotope variations in zircon populations provides a toolfor the detailed analysis of the evolution of individual igneousrocks; it offers new insights into the contributions of differentsource rocks and the importance of magma mixing in granite petrogenesis.Such information is rarely obtainable from the analysis of bulkrocks. KEY WORDS: granite source origins; zircon Hf isotopes; zircon petrogenesis; zircon morphology; zircon U–Pb ages  相似文献   

10.
The Yunkai Terrane is one of the most important pre-Devonian areas of metamorphosed supracrustal and granitic basement rocks in the Cathaysia Block of South China. The supracrustal rocks are mainly schist, slate and phyllite, with local paragneiss, granulite, amphibolite and marble, with metamorphic grades ranging from greenschist to granulite facies. Largely on the basis of metamorphic grade, they were previously divided into the Palaeo- to Mesoproterozoic Gaozhou Complex, the early Neoproterozoic Yunkai ‘Group’ and early Palaeozoic sediments. Granitic rocks were considered to be Meso- and Neoproterozoic, or early Palaeozoic in age. In this study, four meta-sedimentary rock samples, two each from the Yunkai ‘Group’ and Gaozhou Complex, together with three granite samples, record metamorphic and magmatic zircon ages of 443–430 Ma (Silurian), with many inherited and detrital zircons with the ages mainly ranging from 1.1 to 0.8 Ga, although zircons with Archaean and Palaeoproterozoic ages have also been identified in several of the samples. A high-grade sillimanite–garnet–cordierite gneiss contains 242 Ma metamorphic zircons, as well as 440 Ma ones. Three of the meta-sedimentary rocks show large variations in major element compositions, but have similar REE patterns, and have tDM model ages of 2.17–1.91 Ga and εNd (440 Ma) values of −13.4 to −10.0. Granites range in composition from monzogranite to syenogranite and record tDM model ages of 2.13–1.42 Ga and εNd (440 Ma) values of −8.4 to −1.2. It is concluded that the Yunkai ‘Group’ and Gaozhou Complex formed coevally in the late Neoproterozoic to early Palaeozoic, probably at the same time as weakly to un-metamorphosed early Palaeozoic sediments in the area. Based on the detrital zircon population, the source area contained Meso- to Neoproterozoic rocks, with some Archaean material. Palaeozoic tectonothermal events and zircon growth in the Yunkai Terrane can be correlated with events of similar age and character known throughout the Cathaysia Block. The lack of evidence for Palaeo- and Mesoproterozoic rocks at Yunkai, as stated in earlier publications, means that revision of the basement geology of Cathaysia is necessary.  相似文献   

11.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

12.
在江西相山铀矿田河元背地区实施的CUSD3钻孔,发现其深部存在晚期侵入到打鼓顶组流纹英安岩、凝灰岩、泥质粉砂岩中的流纹斑岩。利用激光等离子质谱分析技术(LA ICP MS)测得流纹斑岩的锆石206Pb/238U年龄为(1318±07)Ma (MSWD=041),晚于前人所测的鹅湖岭组碎斑流纹岩年龄。该流纹斑岩具有高硅、富钾、铝过饱和等特点,还表现出高场强元素Rb、Th、U、La、Ce、Nd和LREE富集,Ba、Nb、Sr、P、Ti等元素亏损以及δEu明显负异常的特点。锆石的εHf(t)值介于 -677~-1038之间,对应的二阶段Hf模式年龄TDMC介于1 619~1 846 Ma,岩石的ISr值为0710 92~0712 01,εNd(t)值为-818~-919。其稀土元素、微量元素分布模式及同位素特征与前人报道的碎斑流纹岩特征类似,暗示流纹斑岩与碎斑流纹岩具有相同的物质来源。以上特征说明河元背地区流纹斑岩形成于早白垩世造山运动碰撞后伸展阶段,为深部硅铝质地壳部分熔融的产物。相山西部流纹斑岩的发现,可以推测该区或许存在一个次级火山机构。  相似文献   

13.
A detailed in situ isotopic (U–Pb, Lu–Hf) and geochemicalstudy of zircon populations in a composite sequence of foliatedto massive Cambro-Ordovician intrusions in the Deep Freeze Range(North Victoria Land, Antarctica), has highlighted great complexityin zircon systematics. Zircons in deformed granitoids and tonalitesdisplay complex internal textures, a wide spread of concordantU–Pb ages (between 522 and 435 Ma) and unusual trace-elementcompositions (anomalous enrichment of light rare earth elements,U, Th and Y) within single zircon grains. In contrast, zirconsfrom undeformed samples display a limited range of U–Pbages and trace-element compositions. Zircons from all age andtextural populations in most of the deformed and undeformedsamples show a relatively narrow range of Hf values, suggestingthat the Lu–Hf system remained undisturbed. Inferred emplacementages cover a time interval of about 30 Myr: from 508 to 493Ma for the oldest strongly foliated synkinematic Howard Peaksmegacrystic monzogranites and high-K calc-alkaline mafic tointermediate rocks of the ‘Corner Tonalite’ unit;from about 489 to 481 Ma for the younger massive shoshoniticmafic dyke suite and the high-K calc-alkaline Keinath granite.The observed isotopic and chemical variations in zircon areattributed to a sub-solidus recrystallization under hydrousconditions and varying temperature, in a setting characterizedby a transpressional to extensional stress regime. KEY WORDS: Antarctica; Cambro-Ordovician intrusives; Ross Orogen; zircon U–Pb geochronology  相似文献   

14.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

15.
湘南骑田岭竹枧水花岗岩的锆石SHRIMP U—Pb年代学和岩石学   总被引:31,自引:5,他引:31  
骑田岭岩体的竹枧水花岗岩是我国南岭地区最早进行同位素年龄测定的花岗岩之一,20世纪60年代初期获得的黑云母K—Ar年龄数据,曾用来作为骑田岭花岗岩属于印支期的主要依据。最近对其进行了锆石SHRIMPU—Pb年龄测定及岩石学和地球化学研究,测得其结晶年龄为160±2Ma,属燕山早期。它富碱富钾,富含LILE和HFSE,具壳幔混合来源,形成于华南大陆内部后造山阶段拉张减薄的构造环境。  相似文献   

16.
沙子沟铜矿床位于西昆仑造山带西段,矿区内发育与成矿关系密切的花岗闪长岩体。笔者针对该岩体开展了岩石地球化学、锆石U-Pb年代学及Lu-Hf同位素组成的研究。LA-ICP-MS锆石U-Pb测年结果为(213.7±2.6)Ma,为锆石结晶年龄,属于晚三叠世;锆石Hf同位素组成表明εHf(t)值为-2.72~1.21,显示成岩过程中有少量幔源岩浆的参与;岩石地球化学结果表明花岗闪长岩具有富钙、富钾、富镁、富铁的特征,铝饱和指数A/CNK为0.99~1.04(<1.1),具有中等强度的负Eu异常(δEu为0.54~0.94,平均为0.79),富集Rb、Th、K、Nd、Sm和LREE等大离子亲石元素,亏损Ba、Nb、Ta、Sr、P、Ti和HREE等高场强元素,显示了I型花岗岩的特征。沙子沟铜矿床成因为岩浆热液型,其早期成矿时代与沙子沟花岗闪长岩形成时代吻合,成矿物质主要来自造山带下地壳,矿区弱过铝质I型花岗岩为成矿提供物源和热源。笔者认为沙子沟花岗闪长岩构造背景属古特提斯洋俯冲碰撞造山作用之后的后碰撞伸展构造,源岩可能由地幔底侵古老陆壳,是壳源花岗质岩浆与幔源基性岩浆发生强烈混合作用的产物,正是这种壳幔物质交换为区内铜多金属矿化提供大量成矿物质来源。  相似文献   

17.
The Jiang Tso ophiolite,situated in the middle segment of the Bangong- Nujiang Suture Zone,is a part of the easternmost Qieli Lake ophiolite subzone and is close to the south of Pung Lake ophiolite. The rock association of Jiang Tso ophiolite is relatively complete and is mainly composed of metamorphic peridotite,gabbro and diabase. Comparing with N-MORB,the ophiolite is high in Mg and low in Ti,K,Na,P,and is depleted in Nb,Ta,Hf,Th and enriched in Rb,Sr and Ba. Geochemical characteristics of the Jiang Tso ophiolite indicate it is of a supra-subduction zone type formed in the spreading ridge of back arc basin. The SHRIMP U-Pb dating of zircons from the gabbro yielded a weighted average age of 188.1±4.1 Ma(MSWD=1.4),indicating the Jiang Tso ophiolite was formed in the late stage of early Jurassic. The Sr,Nd isotopic compositions show that the Tethyan mantle domain is the depleted mantle(DM),with enriched mantle domain II(EM II). They have the same Sr,Nd isotopic composition with the India Ocean MORB type.  相似文献   

18.
玛孜措石英闪长岩体位于松潘 甘孜地体南部的甘孜地体内,地处鲜水河断裂带西南侧。岩体具高钾(3.53%~3.86%)、富钙(4.91%~6.07%)、贫铝(14.60%~15.24%),铝饱和指数(A/CNK=0.80~0.89)偏低的特征,岩石稀土总量较低,轻稀土中度富集,δEu介于0.46~0.53之间,Eu中度亏损,岩石(87Sr/86Sr)i比值介于0.707407~0.707640,表明岩浆起源于壳 幔混熔或下地壳物质的部分熔融,属下地壳重熔的I型高钾钙碱性花岗岩系列。在微量元素构造环境判别图上,样品都落在岛弧区,反映了石英闪长岩具有与岛弧型花岗岩相似的地球化学性质。岩体具较高的Rb(60.1×10-6~85.9×10-6)、Cs(4.01×10-6~19.62×10-6)含量和K2O/Na2O比值(1.31~1.82),反映源区可能与黑云母的脱水熔融有关。玛孜措石英闪长岩锆石SHRIMP U Pb年龄为221±2.0 Ma(MSWD=1.4),显示岩体侵位时代为晚三叠世;而全岩Rb Sr等时线年龄为207.0±2.0 Ma(R=0.9979),显示岩体就位时代为晚三叠世晚期。玛孜措岩体形成于晚三叠世弧后构造环境,是幔源岩浆的底侵作用导致壳-幔混熔的产物。  相似文献   

19.
The formation, age and trace element composition of zircon andmonazite were investigated across the prograde, low-pressuremetamorphic sequence at Mount Stafford (central Australia).Three pairs of inter-layered metapelites and metapsammites weresampled in migmatites from amphibolite-facies (T 600°C)to granulite-facies conditions (T 800°C). Sensitive high-resolutionion microprobe U–Pb dating on metamorphic zircon rimsand on monazite indicates that granulite-facies metamorphismoccurred between 1795 and 1805 Ma. The intrusion of an associatedgranite was coeval with metamorphism at 1802 ± 3 Ma andis unlikely to be the heat source for the prograde metamorphism.Metamorphic growth of zircon started at T 750°C, well abovethe pelite solidus. Zircon is more abundant in the metapelites,which experienced higher degrees of partial melting comparedwith the associated metapsammites. In contrast, monazite growthinitiated under sub-solidus prograde conditions. At granulite-faciesconditions two distinct metamorphic domains were observed inmonazite. Textural observations, petrology and the trace elementcomposition of monazite and garnet provide evidence that thefirst metamorphic monazite domain grew prior to garnet duringprograde conditions and the second in equilibrium with garnetand zircon close to the metamorphic peak. Ages from sub-solidus,prograde and peak metamorphic monazite and zircon are not distinguishablewithin error, indicating that heating took place in less than20 Myr. KEY WORDS: accessory phases; anatexis; trace element partitioning; U–Pb dating  相似文献   

20.
The Suguti volcanic rocks of the southern Musoma-Mara greenstone belt in northern Tanzania comprise mainly of a bimodal suite of tholeiitic basalts-basaltic andesites and calc-alkaline rhyolites with a subordinate amount of intermediate rocks. Zircon U–Pb and whole rock Sm–Nd geochronology suggests that the two suites are cogenetic and were emplaced at 2755 ± 1 Ma with a common initial Nd value of 2.1.The tholeiitic basalts are characterised by relatively flat chondrite-normalised REE patterns with La/YbCN ratios of 0.8–1.6 (mean = 1.0). The basalts also exhibit negative Ti and Nb anomalies in primitive mantle-normalised multi-element diagrams. The flat REE patterns, the presence of prominent negative Nb anomalies and the positive initial Nd value of 2.1 suggest that the basalts were formed by low pressure melting of a mantle wedge in an active continental margin setting.Compared to the tholeiitic basalts, the calc-alkaline rhyolites are characterised by low abundances of the transition elements (Cr < 20 ppm, Ni < 20 ppm) and moderately high HFSE (e.g. Zr = 111–250 ppm) abundances. The rhyolites display strongly fractionated, slightly concave upward chondrite normalised REE patterns that are characterised by a slight depletion of the MREE relative to the HREE and minor to large negative Eu anomalies (Eu/Eu* = 0.3–0.9) and their epsilon Nd values range from +2.05 to +2.33. The depletion of the MREE relative to the HREE is an indication of fractionation of clinopyroxene and hornblende during petrogenesis whereas the negative Eu anomalies indicate plagioclase fractionation. The rhyolites are interpreted to have formed from the parental magma of the basalts by fractional crystallization and/or partial melting of a relatively young basaltic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号