首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model based on the second-order fully nonlinear Boussinesq equations of Wei et al. [1995. Journal of Waterway, Port, Coastal and Ocean Engineering 121 (5), 251-263] is developed to simulate the Bragg reflection of both regular and irregular surface waves scattered by submerged bars. Particularly for incident regular waves, the computed results are observed to agree very well with the existing experimental data as presented by Davies and Heathershaw [1984. Journal of Fluid Mechanics 144, 419-446] and Kirby and Anton [1990. Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 757–768). In the case of incident irregular waves, the simulated results reveal that the distribution of Bragg reflection from irregular waves becomes more flat than that of regular waves. Due to lack of experimental data, the numerical results for incident irregular waves are compared with those of the evolution equation of the mild-slope equation [Hsu et al., 2002 Proceedings of the 24th Ocean Engineering Conference in Taiwan, pp. 70–77 (in Chinese)]. In addition, several parameters such as the number of bars, the relative height of bars and the spacing of bars affecting Bragg reflection are also discussed.  相似文献   

2.
A comparison of the diffraction of multidirectional random waves using several selected wave spectrum models is presented in this paper. Six wave spectrum models, Bretschneider, Pierson–Moskowitz, ISSC, ITTC, Mitsuyasu, and JONSWAP spectrum, are considered. A discrete form for each of the given spectrum models is used to specify the incident wave conditions. Analytical solutions based on both the Fresnel integrals and polynomial approximations of the Fresnel integrals and numerical solutions of a boundary integral approach have been used to obtain the two-dimensional wave diffraction by a semi-infinite breakwater at uniform water depth. The diffraction of random waves is based on the cumulative superposition of linear diffraction solution. The results of predicted random wave diffraction for each of the given spectrum models are compared with those of the published physical model presented by Briggs et al. [1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering—ASCE 121(1), 23–35]. Reasonable agreement is obtained in all cases. The effect of the directional spreading function is also examined from the results of the random wave diffraction. Based on these comparisons, the present model for the analysis of various wave spectra is found to be an accurate and efficient tool for predicting the random wave field around a semi-infinite breakwater or inside a harbor of arbitrary geometry in practical applications.  相似文献   

3.
The Breaking Celerity Index (BCI) is proposed as a new wave breaking criterion for Boussinesq-type equations wave propagation models (BTE).The BCI effectiveness in determining the breaking initiation location has been verified against data from different experimental investigations conducted with incident regular and irregular waves propagating along uniform slope [Utku, M. (1999). “The Relative Trough Froude Number. A New Criteria for Wave Breaking”. Ph.D. Dissertation, Dept. of Civil and Enviromental Engineering, Old Dominion University, Norfolk, VA; Gonsalves Veloso dos Reis, M.T.L. (1992). “Characteristics of waves in the surf zone”. MS Thesis, Department of Civil Engineering, University of Liverpool., Liverpool; Lara, J.L., Losada, I.J., and Liu, P.L.-F. (2006). “Breaking waves over a mild gravel slope: experimental and numerical analysis”. Journal of Geophysical Research, VOL 111, C11019] and barred beaches [Tomasicchio, G.R., and Sancho, F. (2002). “On wave induced undertow at a barred beach”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 557–569]. The considered experiments were carried out in small-scale and large-scale facilities. In addition, one set of data has been obtained by the use of the COBRAS model based upon the Reynolds Averaged Navier Stokes (RANS) equations [Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., and Sakakiyama, T. (2000). “A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions”. Proceedings of Coastal Structures ‘99, Balkema, Rotterdam, 169–174; Losada, I.J., Lara, J.L., and Liu, P.L.-F. (2005). “Numerical simulation based on a RANS model of wave groups on an impermeable slope”. Proceedings of Fifth International Symposium WAVES 2005, Madrid].Numerical simulations have been performed with the 1D-FUNWAVE model [Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998). “FUNWAVE 1.0 Fully Nonlinear Boussinesq Wave Model Documentation and User's Manual”. Research Report No CACR-98-06, Center for Applied Coastal Research, University of Delaware, Newark]. With regard to the adopted experimental conditions, the breaking location has been calculated for different trigger mechanisms [Zelt, J.A. (1991). “The run-up of nonbreaking and breaking solitary waves”. Coastal Engineering, 15, 205–246; Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). “Boussinesq modeling of wave transformation, breaking and run-up. I: 1D”. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39–47; Utku, M., and Basco, D.R. (2002). “A new criteria for wave breaking based on the Relative Trough Froude Number”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 258–268] including the proposed BCI.The calculations have shown that BCI gives a better agreement with the physical data with respect to the other trigger criteria, both for spilling and plunging breaking events, with a not negligible reduction of the calculation time.  相似文献   

4.
Extended Boussinesq equations for rapidly varying topography   总被引:1,自引:0,他引:1  
We developed a new Boussinesq-type model which extends the equations of Madsen and Sørensen [1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry. Coastal Engineering 18, 183-204.] by including both bottom curvature and squared bottom slope terms. Numerical experiments were conducted for wave reflection from the Booij's [1983. A note on the accuracy of the mild-slope equation. Coastal Engineering 7, 191-203] planar slope with different wave frequencies using several types of Boussinesq equations. Madsen and Sørensen's model results are accurate in the whole slopes in shallow waters, but inaccurate in intermediate water depths. Nwogu's [1993. Alternative form of Boussinesq equation for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering 119, 618-638] model results are accurate up to 1:1 (V:H) slope, but significantly inaccurate for steep slopes. The present model results are accurate up to the slope of 1:1, but somewhat inaccurate for very steep slopes. Further, numerical experiments were conducted for wave reflections from a ripple patch and also a Gaussian-shaped trench. For the two cases, the results of Nwogu's model and the present model are accurate, because these models include the bottom curvature term which is important for the cases. However, Madsen and Sørensen's model results are inaccurate, because this model neglects the bottom curvature term.  相似文献   

5.
Z. Zhong  K.H. Wang   《Ocean Engineering》2006,33(7):927-949
Theoretical investigations on solitary waves interacting with a surface-piercing concentric porous cylinder system are presented in this paper. The outer cylinder is porous and considered thin in thickness, while the inner cylinder is solid. Both cylinders are rigidly fixed on the bottom. Following Isaacson's [Isaacson, Micheal de St. Q., 1983. Solitary wave diffraction around large cylinder. Journal of the Waterway, Port, Coastal and Ocean Engineering 109(1), 121–127.] approach, we obtained the solutions for free-surface elevation and the corresponding velocity potential in terms of Fourier integrals. Numerical results are presented to show the effects of incident wave condition, porosity of the outer cylinder and radius ratio on wave forces and wave elevations around the inner and outer cylinders.  相似文献   

6.
《Coastal Engineering》2001,42(2):155-162
It is studied whether the mass transport or energy transport is the proper viewpoint for internally generating waves in the extended Boussinesq equations of Nwogu [J. Waterw., Port, Coastal Ocean Eng. 119 (1993) 618–638]. Numerical solutions of the Boussinesq equations with the internal generation of sinusoidal waves show that the energy transport approach yields the required wave amplitude properly while the mass transport approach yields wave amplitude different from the required one by the ratio of phase velocity to energy velocity. The waves which pass through the wave generation point do not cause any numerical distortion while the incident waves are generated. The technique of internal generation of waves shows its capability of generating nonlinear cnoidal waves as well as linear sinusoidal waves.  相似文献   

7.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

8.
The study describes a new fixed-frequency Stokes wave theory that differs from previous Stokes wave theories that fix the wave number. The present wave expansion analytically reveals that the wavelength increases with wave height and exceeds than the wavelength obtained by linear wave theory. A method proposed to comparably transform the wave celerity of Fenton's [Fenton, J.D., 1985. A fifth-order Stokes theory for steady waves. Journal of Waterway, Port, Coastal and Ocean Engineering 111, 216–234.] wave theory to the present one. A direct calculation of the wavelength is introduced for practical solutions, avoiding the need to solve a nonlinear equation using an iterative numerical method.  相似文献   

9.
This paper provides an approach by which the burial and scour of short cylinders under combined second order random waves and currents can be derived. Here the formulas for burial and scour for regular waves plus currents presented by Catano-Lopera and Garcia [Catano-Lopera, Y.A. and Garcia, M.H. (2006). Burial of short cylinders induced by scour under combined waves and currents. ASCE J. Waterway, Port, Coastal and Ocean Eng. 132(6), 439–449., Catano-Lopera, Y.A. and Garcia, M.H. (2007). Geometry of scour hole around, and the influence of the angle of attack on the burial of finite cylinders under combined flows. Ocean Eng. 34(5, 6), 856–869.] are used together with Stokes second order wave theory by assuming the basic harmonic wave motion to be a stationary Gaussian narrow-band random process. An example of calculation is also presented.  相似文献   

10.
An approach by which the scour depth and scour width below a fixed pipeline and scour depth around a circular vertical pile in random waves can be derived is presented. Here, the scour depth formulas by Sumer and Fredsøe [ASCE J. Waterw., Port, Coastal Ocean Eng. 116 (1990) 307] for pipelines and Sumer et al. [ASCE J. Waterw., Port, Coastal Ocean Eng. 114 (1992) 599] for vertical piles as well as the scour width formula by Sumer and Fredsøe [The Mechanics of Scour in the Marine Environment, World Scientific, Singapore, 2002] for pipelines combined with describing the waves as a stationary Gaussian narrow-band random process are used to derive the cumulative distribution functions of the scour depths and width. Comparisons are made between the present approach and random wave scour data. Tentative approaches to related random wave scour cases are also suggested.  相似文献   

11.
D.-S. Hur  K.-H. Lee  G.-S. Yeom   《Ocean Engineering》2008,35(17-18):1826-1841
In designing the coastal structures, the accurate estimation of the wave forces on them is of great importance. In this paper, the influences of the phase difference on wave pressure acting on a composite breakwater installed in the three-dimensional (3-D) wave field are studied numerically. We extend the earlier model [Hur, D.S., Mizutani, N., 2003. Coastal Engineering 47, 329–345] to simulate 3-D wave fields by introducing 3-D Navier–Stokes solver with the Smagorinsky's sub-grid scale (SGS) model. For the validation of the model, the wave field around a 3-D asymmetrical structure installed on a submerged breakwater, in which the complex wave deformations generate, is simulated, and the numerical solutions are compared to the experimental data reported by Hur, Mizutani, Kim [2004. Coastal Engineering (51, 407–420)]. The model is then adopted to investigate 3-D characteristics of wave pressure and force on a caisson of composite breakwater, and the numerical solutions were discussed with respect to the phase difference between harbor and seaward sides induced by the transmitted wave through the rubble mound or the diffraction. The numerical results reveal that wave forces acting on the composite breakwater are significantly different at each cross-section under influence of wave diffraction that is important parameter on 3-D wave interaction with coastal structures.  相似文献   

12.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

13.
《Coastal Engineering》2006,53(2-3):157-170
Influence of various factors affecting the longshore currents induced by obliquely incident random waves is examined through numerical calculation. Seven numerical models for random wave breaking process are found to yield large differences in the wave heights in the surf zone and longshore current velocities. The turbulent eddy viscosity formulation by Larson and Kraus [Larson, M. and Kraus, N.C. (1991): Numerical model of longshore current for bar and trough beaches, J. Waterway, Port, Coastal, and Ocean Eng., ASCE, 117 (4), pp. 326-347.] functions almost equal to that by Battjes [Battjes, J.A. (1975): Modeling of turbulence in the surf zone, Proc. Symp. Modeling Techniques, pp. 1050–1061.], but the formulation by Longuet-Higgins [Longuet-Higgins, M.S. (1970): Longshore current generated by obliquely incident sea waves, 1 and 2, J. Geophys. Res., 75 (33), pp. 6779–6801.] produces excessive diffusion of longshore currents into the offshore zone. The generation and decay process of the surface roller is indispensable in the longshore current analysis. The random wave transformation model called PEGBIS (Parabolic Equation with Gradational Breaker Index for Spectral waves) by Goda [Goda, Y. (2004): A 2-D random wave transformation model with gradational breaker index, Coastal Engineering Journal, JSCE and World Scientific, 46 (1), pp. 1–38.] produced good agreement with several laboratory and field data of longshore currents.  相似文献   

14.
Scour below marine pipelines in shoaling conditions for random waves   总被引:1,自引:0,他引:1  
This paper provides an approach by which the scour depth below pipelines in shoaling conditions beneath non-breaking and breaking random waves can be derived. Here the scour depth formula in shoaling conditions for regular non-breaking and breaking waves with normal incidence to the pipeline presented by Cevik and Yüksel [Cevik, E. and Yüksel, Y., (1999). Scour under submarine pipelines in waves in shoaling conditions. ASCE J. Waterw., Port, Coast. Ocean Eng., 125 (1), 9–19.] combined with the wave height distribution including shoaling and breaking waves presented by Mendez et al. [Mendez, F.J., Losada, I.J. and Medina, R., (2004). Transformation model of wave height distribution on planar beaches. Coast. Eng. 50 (3), 97–115.] are used. Moreover, the approach is based on describing the wave motion as a stationary Gaussian narrow-band random process. An example of calculation is also presented.  相似文献   

15.
Evolution of waves and currents over a submerged laboratory shoal   总被引:1,自引:0,他引:1  
The vertically-integrated effect of interaction between waves and wave-induced currents on wave transformation over a submerged elliptic shoal was investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction- diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269–284.]. The numerical simulations were performed using two numerical wave-current model systems: one, a combination of the wave model SWAN and the current model SHORECIRC, and the other, a combination of the wave model REF/DIF and the same current model. A time-dependent, phase-resolving wave and current model, FUNWAVE, was also utilized to simulate the experiment. In the simulations, the developed wave-induced currents defocused waves behind the shoal and brought on a wave shadow zone that showed relatively low wave height distributions. For the breaking case of monochromatic waves, the wave heights computed using FUNWAVE showed good agreement with the measurements and the resulting wave-induced currents showed a jet-like velocity distribution in transverse direction. And the computed results of the two model combinations agreed better with the measurements than the computed results obtained by neglecting wave-current interaction. However, it was found that for the case in which transverse interference pattern caused by refracted waves was strong, REF/DIF-SHORECIRC did not correctly evaluate radiation stresses, the gradients of which generate wave-induced currents. SWAN-SHORECIRC, which cannot deal with the interference patterns, predicted a jet-like wave-induced current. For breaking random wave cases, the computed results of the two model combinations and FUNWAVE agreed well with the measurements. The agreements indicate that it is necessary to take into account the effect of wave-induced current on wave refraction when wave breaking occurs over a submerged shoal.  相似文献   

16.
《Coastal Engineering》2004,51(10):991-1020
This paper describes the capability of a numerical model named COrnell BReaking waves And Structures (COBRAS) [Lin, P., Liu, P.L.-F., 1998. A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics 359, 239–264; Liu, P.L.-F., Lin, P., Chang, K.A., Sakakiyama, T., 1999. Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal and Ocean Engineering 125, 322–330, Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., Sakakiyama, T., 2000. A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions. Proc. Coastal Structures '99, 169–174] based on the Reynolds Averaged Navier–Stokes (RANS) equations to simulate the most relevant hydrodynamic near-field processes that take place in the interaction between waves and low-crested breakwaters. The model considers wave reflection, transmission, overtopping and breaking due to transient nonlinear waves including turbulence in the fluid domain and in the permeable regions for any kind of geometry and number of layers. Small-scale laboratory tests were conducted in order to validate the model, with different wave conditions and breakwater configurations. In the present study, regular waves of different heights and periods impinging on a wide-crested structure are considered. Three different water depths were tested in order to examine the influence of the structure freeboard. The experimental set-up includes a flow recirculation system aimed at preventing water piling-up at the lee of the breakwater due to overtopping. The applicability and validity of the model are examined by comparing the results of the numerical computations with experimental data. The model is proved to simulate with a high degree of agreement all the studied magnitudes, free surface displacement, pressure inside the porous structure and velocity field. The results obtained show that this model represents a substantial improvement in the numerical modelling of low-crested structures (LCS) since it includes many processes neglected previously by existing models. The information provided by the model can be useful to analyse structure functionality, structure stability, scour and many other hydrodynamic processes of interest.  相似文献   

17.
The authors of the present paper have suggested an iterative scheme to calculate the nonlinear wave profiles [Jang and Kwon, 2005. Application of nonlinear iteration scheme to the nonlinear water wave problem: Stokes wave. Ocean Engineering 32, 1862–1872]. The scheme was shown to be good for estimating nonlinear wave profiles. In the study, the iterative scheme is applied to the wave-diffraction problem by a long breakwater to calculate a diffracted wave by the breakwater. The iterative solution of diffraction was compared with the linear solution of Sommerfeld, 1896. [Mathematische Theoried der Diffraction. Mathematical Annals 47, 317–374]. For a small wave slope, the two solutions were in good agreement. However, the scheme enabled us to observe the nonlinear behaviors of a beating phenomenon and of wave profile such as Stokes’ wave for a relatively large wave slope: as the wave slope becomes larger, we can examine the nonlinear wave characteristics of the actual shapes of waves, i.e., the crests are steeper and the troughs are flatter.  相似文献   

18.
We develop techniques of numerical wave generation in the time-dependent extended mild-slope equations of Suh et al. [1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering 32, 91–117] and Lee et al. [2003. Extended mild-slope equation for random waves. Coastal Engineering 48, 277–287] for random waves using a source function method. Numerical results for both regular and irregular waves in one and two horizontal dimensions show that the wave heights and the frequency spectra are properly reproduced. The waves that pass through the wave generation region do not cause any numerical disturbances, showing usefulness of the source function method in avoiding re-reflection problems at the offshore boundary.  相似文献   

19.
A set of optimum parameter α is obtained to evaluate the linear dispersion and shoaling properties in the extended Boussinesq equations of [Madsen and Sorensen, 1992 and Nwogu, 1993], and [Chen and Liu, 1995]. Optimum α values are determined to produce minimal errors in each wave property of phase velocity, group velocity, or shoaling coefficient relative to the analytical one given by the Stokes wave theory. Comparisons are made of the percent errors in phase velocity, group velocity, and shoaling coefficient produced by the Boussinesq equations with a different set of optimum α values. The case with a fixed value of α = −0.4 is also presented in the comparison. The comparisons reveal that the optimum α value tuned for a particular wave property gives in general poor results for other properties. Considering all the properties simultaneously, the fixed value of α = −0.4 may give overall accuracies in phase velocity and shoaling coefficient for all the types of Boussinesq equations selected in this study.  相似文献   

20.
Two types of analytical solutions for waves propagating over an asymmetric trench are derived. One is a long-wave solution and the other is a mild-slope solution, which is applicable to deeper water. The water depth inside the trench varies in proportion to a power of the distance from the center of the trench (which is the deepest water depth point and the origin of x-coordinate in this study). The mild-slope equation is transformed into a second-order ordinary differential equation with variable coefficients based on the longwave assumption [Hunt's, 1979. Direct solution of wave dispersion equation. Journal of Waterway, Port, Coast. and Ocean Engineering 105, 457–459] as approximate solution for wave dispersion. The analytical solutions are then obtained by using the power series technique. The analytical solutions are compared with the numerical solution of the hyperbolic mild-slope equations. After obtaining the analytical solutions under various conditions, the results are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号