首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Settlements under consecutive series of cyclic loading   总被引:1,自引:0,他引:1  
In this study, consolidation settlements of soft clay caused by cyclic loading and the affecting factors such as number of cycles and stress level were experimentally investigated. A group of samples prepared in slurry consolidometer in the laboratory were tested using cyclic simple shear testing device. Normally consolidated samples were subjected to five consecutive series of cyclic loading and drainage for 60 min were applied between each cyclic loading stages. Cyclic tests were performed with stress controlled two-way sinusoidal wave loading with different stress levels and number of cycles. Frequency of cyclic loading was constant as 0.1 Hz. As a result of this study, it can be concluded that soft clays subjected to undrained cyclic loading and drainage cycles exhibit more resistance against subsequent cyclic shear stresses. The consolidation settlements, pore pressures and shear strains decrease after each stage of cyclic loading.  相似文献   

2.
Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading   总被引:5,自引:0,他引:5  
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed.  相似文献   

3.
钢筋混凝土核心筒体抗震性能试验研究   总被引:17,自引:5,他引:17  
本文对两组五个钢筋混凝土核心筒试件进行了低周反复荷载试验,研究了不同轴压比和剪跨比的核心筒破坏机理、承载能力、延性和耗能能力等方面的抗震性能。结果表明,轴压比对核心筒的抗震性能有较大影响。  相似文献   

4.
循环荷载下饱和岩石的滞后和衰减   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对饱和砂岩和大理岩的循环荷载实验,分析了饱和岩石在循环荷载下的应力-应变滞后回线、瞬时杨氏模量、泊松比的“X”形变化曲线,以及杨氏模量随应变振幅的增加而减少等滞后现象,并分析了施加外力的应变振幅对衰减的影响,认为岩石在循环荷载作用下的衰减与应变振幅成正比,提出的衰减b值反映了岩石在循环荷载作用下衰减的程度. 岩石的衰减和滞后存在密切的关系,通过饱和岩石的宏观行为,探讨了饱和岩石在循环荷载下的滞后和衰减现象的微观机理,认为孔隙流体流动在岩石的滞后和衰减中起着重要作用,岩石内部的颗粒接触粘合和黏滑摩擦可能是孔隙岩石在循环荷载作用下产生滞后和衰减的原因.  相似文献   

5.
Results of in situ tests of shear wave propagation are presented and analysed to evaluate the effects of geologic processes, stress history and ageing on the shear modulus of soils. These results show clear tendencies of soil structures to get stiffer as consequence of ageing or surcharging to high stress levels. The evolution of shear modulus, as verified by these results, is significant as it changes the response of soil deposits to seismic loadings.  相似文献   

6.
Upon cyclic loading, particle breakage of constituent granular materials occurs when the resulting local stresses exceed their strength, which has a significant influence on the deformation of the embankment, foundation and pavement structures. In this study, the artificially crushable materials were tested to investigate the particle breakage properties of these structures when subjected to drained cyclic triaxial loading. Twelve sets of samples were tested at the confining pressures of 100, 125, 150 and 175 kPa and a frequency of 1.0 Hz using a GCTS triaxial system. The cyclic test results indicate that at the same confining pressure, the residual volumetric strain increases with decreasing maximal deviatoric stress qmax at a given ratio of the number of cycles (N) to the number of cycles of failure (Nf). The cumulative crushing ratio Rcc decreases with increasing qmax, leading to a reduction in Nf. The internal frictional angle decreases with increasing Rcc, and Rcc increases with increasing Nf. Furthermore, the confining pressure, maximal cyclic deviatoric stress and N have significant influences on the degree of particle breakage, which leads to volumetric contraction during the cyclic loading process. Finally, the resilient modulus at failure increases linearly with increasing Rcc.  相似文献   

7.
Cement stabilization is often used to improve the bearing capacity and compressibility of soft clays. The present paper aims to investigate the shear modulus degradation of cement treated clay during cyclic loading. A series of cyclic triaxial test was conducted on artificially cement treated marine clay to study the factors affecting the shear modulus degradation. The parameters considered for the study are cement content (2.5–7.5%), curing days (7–28), cyclic shear strain amplitude (0.3–1%), number of loading cycles (1–100) and loading frequency (0.1–0.5 Hz). As in the case of natural clays, cement treated clays exhibit stiffness degradation which depends on mix ratio, curing days and loading conditions. The results show that the shear modulus degradation decreases with increase in the shear strain amplitude, cement content and curing days. It is also noted that irrespective of the mix ratio and curing conditions, the degradation decreases with increase in loading frequency. An empirical relationship is proposed to predict the shear modulus degradation based on Idriss׳s degradation model. The performance of the proposed empirical model is validated with the present experimental results.  相似文献   

8.
Understanding the impact of prior earthquake damage on residual capacity is important for postearthquake damage assessment of buildings; however, interpretation of such impact is challenging when based on tests using traditional reversed‐cyclic loading protocols. A new loading protocol, consisting of a dynamic earthquake displacement history followed by quasi‐static reversed‐cyclic loading to failure, is presented as an alternative to traditional simulated seismic loading protocols. Data are analyzed from a set of 12 nominally identical ductile reinforced concrete beams that were tested by using variations of this protocol and traditional reversed‐cyclic and monotonic protocols. Differences in the cycle content of the earthquake displacement histories applied to the test specimens allowed for the effects of load history variation below 2.2% drift to be isolated. It is found that such variation had no effect on the beam deformation capacities. The effects of dynamic loading rates are also analyzed and compared against control quasi‐static specimens. Relative strength increases due to dynamic loading are found to be more significant at yield than at ultimate. Dynamic loading rates led to modest reductions in the beam deformation capacities, but the presence of causality between these variables remains uncertain.  相似文献   

9.
This paper presents a semi-analytical solution for one dimensional consolidation problem of inelastic clays under cyclic loading considering the effect of the change of the consolidation coefficient of the soil layer. Due to change of the consolidation coefficient, and time-dependant loading, Terzaghi's theory would not be applicable in cyclic conditions. In this research, a method based on the time variable exchange along with the superimposing rule is employed to overcome these shortcomings. Changes in the consolidation coefficient are applied in the solution by modifying the loading and unloading durations introducing a Virtual Time. Based on the superimposing rule a set of continuous static loads in specified times are used instead of the cyclic load in the transformed time space. Each full cycle of loading is replaced by a pair of static loads with different signs. Based on the Terzaghi's theory the pore-water pressure distribution and the degree of consolidation are calculated for each static load and the results are superimposed. A set of laboratory consolidation tests under cyclic load and numerical analysis are performed in order to verify the presented method. The numerical solution and laboratory tests results showed the accuracy of the presented method.  相似文献   

10.
State parameter, ψ, has been widely used to combine the influence of void ratio, e, and stress level, p′, on the soils behavior. Stress ratio, Rs, and modified state parameter, ψm, have also been proposed for the same purpose. This paper aims to evaluate and compare the different state indices in combining the effect of fines content, density and stress level for five different types of sands, by processing a large number of previously published experimental data. The use of the recently established concept of equivalent interparticle void ratio, e, in definition of the state indices is also evaluated. The results indicate that the influence of fines presence, in addition to the e and p′, on the behavior is favorably reflected by the state indices. Unique correlations were derived between the cyclic or monotonic strength and each of the state indices, independent of the fines content. The correlations, for all the different types of soils, fell into limited types of common formulations. ψ and Rs worked generally better than ψm, whether defined in terms of e or e. The extension of straight part of critical state line was found to be an appropriate reference line for calculating Rs used in conjunction with e or e.  相似文献   

11.
Small strain shear modulus Gmax is an essential parameter in soil dynamics, and it is usually estimated based on the Hardin and Richart equation. However, many previous researches on sands have indicated that the Hardin and Richart equation does not consider the influences of cyclic loading history on Gmax. In this paper, effects of cyclic loading history on Gmax of saturated clays under undrained conditions are studied using a combination device of piezoelectric-ceramic bender element system and cyclic triaxial apparatus. The dynamic pre-loading includes both relatively high amplitudes of cyclic stresses and cyclic strains. Gmax without cyclic loading history is also investigated for the comparison purpose. Test results show that, at the same effective stress, both cyclic strain history and cyclic stress history will induce reduction of Gmax compared to the corresponding Gmax values with non-cyclic loading effects. In strain-controlled tests, the reduction of Gmax is slight and relatively stable; while in stress-controlled tests, the reduction of Gmax increases suddenly and remarkably when the effective stresses degrade to a certain degree. The comparison between double amplitude axial strain and residual excess pore water pressure behaviors show that the remarkable reduction of Gmax can demonstrate the cyclic failure of saturated clays.  相似文献   

12.
Based on the Theory of Porous Media (TPM), a mathematical model of a two-dimensional incompressible fluid-saturated elastic soil is established, and the periodic boundary conditions are presented to analyze the transient dynamic response of this soil under a moving cyclic loading. The differential quadrature method (DQM) and the second-order backward difference scheme are applied to discretize the governing equations on the spatial and temporal domains, respectively. As application, a typical two-dimensional wave-induced transient problem with a seabed of finite thickness is analyzed, and the numerical results are compared with the analytical results presented in the present work. In addition, a transient dynamic response of fluid-saturated soil under limit moving vehicle loadings is studied. The effects of the velocity of vehicle and the volume fraction on the settlement and the pore water pressure are studied.  相似文献   

13.
The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new semi-empirical method is proposed to establish the soil-specific CRR–Vs1 correlation. To validate the proposed method, a number of undrained cyclic triaxial tests along with bender element tests were performed on two types of sands. Similar experimental data for six other types of sands reported in the literature was also compiled. Applying the proposed method, soil-specific CRR–Vs1 correlation curves were developed for these eight types of sands. It is shown that the correlation is not unique for different types of sands and the boundary curve proposed in the available simplified method can only be used as an initial estimation of liquefaction resistance. Finally, using the results of this study as well as previous ones, a chart is suggested to be used in engineering practice showing the conditions for which a detailed soil-specific CRR–Vs1 correlation study needs to be performed.  相似文献   

14.
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Sur) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.  相似文献   

15.
本文进行了2种矩形钢管混凝土柱与钢梁连接节点——翼缘全螺栓(BFP)连接节点与外加强环(WFP-BW)连接节点在柱端低周反复荷载作用下的抗震性能试验,分析比较了这2类节点与焊接翼缘板(WFP)连接节点在不同轴压比下的滞回性能、强度与刚度退化、延性比与耗能比、破坏机理与破坏特征,得出了一些有参考价值的结论。  相似文献   

16.
This study focused on the experimental examination of how hollow composite members perform when subjected to eccentric lateral loading that induces combined bending and torsional stresses. It was found that premature cracking degraded section integrity and interfered with steel–concrete interaction when members were subjected to combined bending and torsion. It was also found that members' bending capacities and ductilities were significantly reduced when the members were subjected to torsion. Relationships among member performance, magnitude of torsion, and sectional aspect ratios were studied to evaluate the torsional effects on member performances and to establish design references for hollow composite member constructions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The sand deposit in Central Western Taiwan typically contained significant amounts of fines. The assessment of liquefaction potential using the simplified procedure often involved adjustment in field test results to account for the effects of fines. The available fines content (FC) adjustment methods are highly empirical and may lead to very different conclusions. The need and/or level of FC adjustment should be justified based on cyclic behavior of sand and its relationship with fines. This study made an attempt to provide that reference information for a silty sand commonly found in Central Western Taiwan. A series of isotropic consolidation, undrained monotonic and cyclic triaxial tests were conducted on reconstituted Mai Liao Sand (MLS) with various FCs and densities. Concurrent shear wave velocities were measured using bender elements in some of the cyclic triaxial tests. This paper describes the geological background, the laboratory tests and their implications in the assessment of liquefaction potential for MLS.  相似文献   

18.
Multiple series of triaxial tests were carried out on unsaturated sandy soils subjected to irregular seismic excitation. To observe the volume changes of unsaturated soil specimens during undrained loading and subsequent process of drainage, the inner cell was newly installed inside the large triaxial cell. The soil samples tested were recovered from the construction site of a liquefied natural gas storage facility located in Tokyo Bay area. In the tests, the initial conditions of soil specimens were specified with the degrees of saturation Sr of 50, 75 and 100%. The soil specimens were anisotropically consolidated, and subjected to undrained irregular seismic excitation. The time history of irregular seismic excitation was the one obtained from one of the recent earthquakes in Japan. The drainage line was then opened to let the excess pore water drain out of soil specimens. The volume changes and residual shear strains of unsaturated soil specimens thus obtained are presented in the present paper.  相似文献   

19.
借助有限元数值方法模拟不同砂土试样在多向和单向地震荷载输入条件下的动三轴试验,选取覆盖大震、中震、近场、远场及不同土质条件的155组多向地震输入时程对不同砂土试样分别进行单向和多向加载,建立考虑多向地震荷载作用的等效循环周数计算方法,并研究震级、震中距和砂土特性对等效循环周数比的影响。研究表明,震级和震中距对等效循环周数比影响不明显,砂土特性对等效循环周数比的影响具有主导作用,砂土相对密度为45%、60%、80%和100%时,其对应的等效循环周数比均值分别为1.58、1.75、1.93和2.08,相对密度越大,比值越大,结合该比值,可以较好地应用文中提出方法进行多维地震荷载等效循环周数计算。  相似文献   

20.
Permanent displacements of a gas turbine founded on a fine, poorly graded, and medium density sand are studied. The amplitudes and modes of vibration are computed using Barkan´s formulation, and the “High-Cycle Accumulation” (HCA) model is employed to account for accumulated deformations due to the high number of cycles. The methodology is simple: it can be easily incorporated into standard mathematical software, and HCA model parameters can be estimated based on granulometry and index properties. Special attention is devoted to ‘transient’ situations at equipment´s start-up, during which a range of frequencies – including frequencies that could be similar to the natural frequencies of the ground – is traversed. Results show that such transient situations could be more restrictive than stationary situations corresponding to normal operation. Therefore, checking the stationary situation only might not be enough, and studying the influence of transient situations on computed permanent displacements is needed to produce a proper foundation design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号