首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, multi-layered targets have become commonplace in both military and civilian applications, such as marine hulls, armored vehicle bodies, outside structures of bulletproof cars, and aerospace vessels. This paper studies the resistant performance of perforation in multi-layered targets. An estimation procedure is established based on the concepts of the conservation of momentum, impulse-momentum law, and conservation of energy. Experimental results of the test of Almohandes et al. are adopted to check the residual velocity of multi-layered targets. The results of the verification are good in terms of agreement for impact velocities ranging from 700 to 800 m/s, when the ratio of the projectile length to the projectile diameter (i.e. L/D) is 4.2, and the average residual velocity error of single, double- or triple-layered targets range approximately from 4.42 to 8.40%. The ballistic performance is best for the double target when the ratio of the first layer thickness to the total thickness (i.e. t1/(t1+t2)) is about 0.75, and the worse performance occurs when the ratio t1/(t1+t2) is 0.5. An air gap slightly influences the resistant performance of perforation in multi-layered targets. These results may serve as a useful reference for designers.  相似文献   

2.
Interactions between ‘oxygen concentration’ (normoxia: >80% oxygen saturation, and hypoxia: 18% oxygen saturation) and ‘water flow velocity’ (low: 0.1 cm s−1, and moderate: 0.5 cm s−1) were studied on growth rates in the brittle star Amphiura filiformis in a flow-through aquaria system. Effects of ‘sublethal predation’ on growth rates were investigated as ‘number of amputated arms’ (1 and 3 arms) and ‘amputation of the disk’. A significant interaction between oxygen concentration and water flow velocity was observed in mean arm regeneration rate, but in both flow velocities higher mean arm regeneration rates were observed in normoxia compared to hypoxia. In hypoxia a positive response in arm regeneration rate was observed in moderate flow compared to low flow velocity. In normoxia, however, no response to flow velocity was observed. The latter observation indicates that Amphiura filiformis is able to maintain the ventilation of the burrow at low flow velocities, but in low oxygen concentrations hydrodynamic forces seem to affect growth. A significant interaction between oxygen concentration and disk amputation was observed in both arm and disk regeneration rates, indicating that the disk is the major organ for gas exchange in this species. The number of arms amputated, however, did not affect mean arm regeneration rate. The results obtained in this study suggest that the secondary production in subtidal infaunal populations could be negatively affected by low oxygen concentrations and that this response is even more negative in combination with low flow velocities in the near-bottom water.  相似文献   

3.
A joint analysis of gravity anomaly and seismic travel-time data has been used to construct a three-dimensional velocity structure for the northeastern extension of the northern South China Sea’s high-magnetic belt in the Taiwan region. The earthquake data used in this study was collected by the Central Weather Bureau Seismological Network from 1991 to 2002, while the gravity data around Taiwan was compiled by Hsu et al. (1998), Terr. Atmos. Oceanic. Sci., 9, 509–532, and Wang et al. (2002), >Terr. Atmos. Oceanic. Sc., 13, 339–354. A modified velocity model obtained by local earthquake tomography was used to construct an initial three-dimensional gravity model, using a linear velocity–density relationship. To derive a crustal velocity–density model that accounts for both types of observations, this study performed a sequential inversion of travel-time and gravity data. The main features of our three-dimensional velocity model are:(1) an uplifted zone with velocity greater than 6.5 km/s being observed in the lower crust, (2) the width and the shape of the uplifted zone being found to be strongly correlated with the high-magnetic belt, (3) a trend by which the lower crustal high-velocity zone turns from northeast to north in central Taiwan, where the high-magnetic zone was truncated. A combination of seismic, gravity, and structural interpretations suggests that the crustal deformation relating to the magnetic truncation observed in northwestern Taiwan could be correlated closely with the collision between the Philippine Sea plate and the Asian continental margin.  相似文献   

4.
A three-dimensional multi-level hydrodynamic model has recently been developed and applied to tidal motion in Singapore’s coastal waters. This paper describes a series of numerical experiments to evaluate the sensitivity of the tidal currents and elevations to model parameters. The results show that the predicted tidal elevations are insensitive to three model parameters: horizontal eddy viscosity coefficient (Smagorinsky constant, ch), bottom friction coefficient (cb) and internal friction coefficient (cv), whereas the effects of these parameters are quite different for tidal current velocities. The velocities are slightly reduced with an increase in ch and cb. The bottom friction effects on velocity profiles increase with water depth. The effect of cv might be significant for the tidal velocities at all levels. The velocities at upper layers of the water column decrease with the increase in cv, whereas the velocities at the bottom layer show the reverse trend. The effects of three model parameters on the magnitude and phase of the simulated currents are in the order (from strong to weak) of cv, cb and ch.  相似文献   

5.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   

6.
A laboratory system was used to test the effect of water flow on the resuspension of mud and sand sediments and, specifically, benthic diatoms from the Ems estuary, The Netherlands. Current velocities generated by two rotating cylinders in a cylindrical tank were determined by a small float and a laser Doppler velocimeter. At low angular velocities, the amount of suspended matter increased linearly with angular velocity and the float current velocity. However, at higher angular velocities, the increase in current velocity was less because of the strong turbulence: concomitantly, the current velocity boundary layer (δ) became thinner and the suspended matter concentration increased rapidly. The dominant diatom species from the sandy sediment were suspended in two distinct groups, one of which consisted of the species Navicula aequorea, Navicula salinicola, Ophephora martyi and Opephora pacifica, and was more exclusively bound to sand grains than the other. The benthic diatom species inhabiting the silty sediment did not show this difference. The most important shortcoming in the experiments was the inability to determine the radial and vertical velocity components. This precluded reliable calculations of the shear stress. The data presented emphasize the importance of finding a method to determine the shear stress under experiments and field conditions so that direct comparisons can be made. Despite this it is assumed that, just as under the experimental conditions discussed, under natural conditions in shallow waters resuspension starts at current velocities as low as ca. 10 cm s−1.  相似文献   

7.
Existence of gas-hydrate in the marine sediments elevates both the P- and S-wave seismic velocities, whereas even a small amount of underlying free-gas decreases the P-wave velocity considerably and the S-wave velocity remains almost unaffected. Study of both P- and S-wave seismic velocities or their ratio (VP/VS) for the hydrate-bearing sediment provides more information than that obtained by the P- or S-wave velocity alone for the quantitative assessment of gas-hydrate. We estimate the P- and S-wave seismic velocities across a BSR (interface between gas-hydrate and free-gas bearing sediments) using the travel time inversion followed by a constrained AVA modeling of multi channel seismic (MCS) data at two locations in the Makran accretionary prism. Using this VP/VS ratio, we then quantify the amount of gas-hydrate and free-gas based on two rock-physics models. The result shows an estimate of 12–14.5% gas-hydrate and 4.5–5.5% free-gas of the pore volume based on first model, and 13–20% gas-hydrate and 3–3.5% free-gas of the pore volume based on the second model, respectively.  相似文献   

8.
This paper presents a Recursive Neural Network (RNN) manoeuvring simulation model for surface ships. Inputs to the simulation are the orders of rudder angle and ship’s speed and also the recursive outputs velocities of sway and yaw. This model is used to test the capabilities of artificial neural networks in manoeuvring simulation of ships. Two manoeuvres are simulated: tactical circles and zigzags. The results between both simulations are compared in order to analyse the accuracy of the RNN. The simulations are performed for the Mariner hull. The data generated to train the network are obtained from a manoeuvrability model performing the simulation of different manoeuvring tests. The RNN proved to be a robust and accurate tool for manoeuvring simulation.  相似文献   

9.
秦皇岛海域海流特征及规模化养殖对其影响的观测研究   总被引:1,自引:1,他引:0  
秦皇岛海域是辽东湾与渤海中部及渤海湾进行物质和能量交换的重要通道。本文基于海床基观测平台获取的夏秋季海流连续观测资料,运用调和分析和滤波等方法对该海域的海流特征及其对规模化养殖的响应进行了研究。结果表明:秦皇岛海域最显著的潮流是M2分潮流,其最大流速介于20.0~36.9 cm/s之间,远小于辽东湾东部海域M2分潮流最大流速;秋季秦皇岛海域余流流速介于0.2~2.5 cm/s之间,整体上较辽东湾东侧海域余流弱,辽东湾底层可能存在逆时针的弱环流系统;夏季秦皇岛海域M2和K1分潮流的最大流速均大于秋季;养殖活动对余流影响较大,养殖区中部A7、A8站余流的垂向平均流速比养殖区边缘A6站分别减小76%和18%左右。  相似文献   

10.
Absolute geostrophic velocities were calculated along TOPEX/Poseidon (T/P) groundtracks located in the Ulleung Basin of the southwestern Japan/East Sea (JES) from a combined analysis of nearly a decade of T/P data and two years of pressure-gauge-equipped inverted echo sounder (PIES) data obtained during the United States Office of Naval Research’s JES Program. Geostrophic velocities have been calculated daily for the Ulleung Basin from June 1999 to July 2001 from a three-dimensional mapping of temperature and salinity produced by PIES data interpreted via the Gravest Empirical Mode (GEM) technique combined with the Navy’s Modular Ocean Data Assimilation System (MODAS). These velocities were then used to convert T/P velocity anomalies to absolute velocities for the T/P time period of 1993 to 2002. Current intensities and variabilities associated with the East Korean Warm Current, Ulleung Warm Eddy, and Offshore Branch are examined. Spatial and temporal variations of the sea surface circulation are strong. Intensification of the currents generally occurred during the fall season. The flow pattern in individual years differed greatly from year to year and differed from climatology in important qualitative ways.  相似文献   

11.
Zai-Jin You   《Ocean Engineering》2004,31(16):1955-1965
A laboratory study was carried to qualitatively investigate the effect of suspended sediment concentration C on the settling velocity ws of cohesive sediment in quiescent water. A bay mud sample was mixed with water in a cylindrical container, and three optical back scatterance sensors were then used to measure suspended sediment concentrations of the mud–water mixture at three levels every 15 s for 5 h while sediments were settling in the quiescent water. Based on the measured sediment concentrations, the settling velocities at different concentrations were derived from the depth-integrated mass balance equation. This study has found that the settling velocity ws is independent of C in the free settling regime of C<0.3 g/l, and then increases nonlinearly with C in the enhanced settling regime of 0.3<C<4.3 g/l, and finally decreases sharply with C in the hindered settling regime of C>4.3 g/l. The maximum settling velocity occurs at C≈4.3 g/l and is about nine times faster than the settling velocity in the free settling regime. A single empirical formula is also proposed to calculate the settling velocities at different sediment concentrations.  相似文献   

12.
Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60°) with P/D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 m/s. The free stream shell side velocity ranges from 0.8 m/s to 1.3 m/s, the reduced gap velocity varies from 1.80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.  相似文献   

13.
We report results of ecosystem studies in Monterey Bay, California, during the summer upwelling periods, 1996–99, including impacts of El Niño 1997–98 and La Niña 1999. Random-systematic line-transect surveys of marine mammals were conducted monthly from August to November 1996, and from May to November 1997–99. CTDs and zooplankton net tows were conducted opportunistically, and at 10 predetermined locations. Hydroacoustic backscatter was measured continuously while underway to estimate prevalence of zooplankton, with emphasis on euphausiids, a key trophic link between primary production and higher trophic level consumers.The occurrences of several of the California Current’s most common cetaceans varied among years. The assemblage of odontocetes became more diverse during the El Niño with a temporary influx of warm-water species. Densities of cold-temperate Dall’s porpoise, Phocoenoides dalli, were greatest before the onset of El Niño, whereas warm-temperate common dolphins, Delphinus spp., were present only during the warm-water period associated with El Niño. Rorqual densities decreased in August 1997 as euphausiid backscatter was reduced. In 1998, as euphausiid backscatter slowly increased, rorqual densities increased sharply to the greatest observed values. Euphausiid backscatter further increased in 1999, whereas rorqual densities were similar to those observed during 1998. We hypothesize that a dramatic reduction in zooplankton biomass offshore during El Niño 1997–98 led to the concentration of rorquals in the remaining productive coastal upwelling areas, including Monterey Bay. These patterns exemplify short-term responses of cetaceans to large-scale changes in oceanic conditions.  相似文献   

14.
In this paper, the characteristics of the bottom boundary layer flow induced by nonlinear, asymmetric shoaling waves, propagating over a smooth bed of 1/15 uniform slope, is experimentally investigated. Flow visualization technique with thin-layered fluorescent dye was first used to observe the variation of the flow structure, and a laser Doppler velocimeter was then employed to measure the horizontal velocity, U.The bottom boundary layer flow is found to be laminar except within a small region near the breaking point. The vertical distribution of the phase-averaged velocity U at each phase is non-uniform, which is directly affected by the mean velocity, . The magnitude of increases from zero at the bottom to a local positive maximum at about z/δ2.02.5 (where z is the height above the sloping bottom and δ is the Stokes layer thickness), then decreases gradually to zero at z/δ6.07.0 approximately, and finally becomes negative as z/δ increases further. Moreover, as waves propagate towards shallower water, the rate of increase in the maximum onshore oscillating velocity component is greater than that of the offshore counterpart except near the breaking point. The free stream velocities in the profiles of the maximum onshore and offshore oscillating velocity components, and are found to appear at z/δ≥6.0. This implies that, if the Stokes layer thickness is used as a length scale, the non-dimensionalized boundary layer thickness remains constant in the pre-breaking zone. Although is greater than and the asymmetry of the maximum free stream velocities (i.e. ) increases with decrease of water depth, a universal similar profile can be established by plotting z/δ versus ( ) or ( ). The final non-dimensional profile is symmetric and unique for the distributions of the maximum onshore and offshore oscillating velocity components within the bottom boundary layer, which are induced by nonlinear, asymmetric shoaling waves crossing the pre-breaking zone.  相似文献   

15.
In this study, we present the results of the combined analyses of ocean bottom seismometer and multi-channel seismic reflection data collection offshore southwestern Taiwan, with respect to the presence of gas hydrates and free gas within the accretionary wedge sediments. Estimates of the compressional velocities along EW9509-33 seismic reflection profile are obtained by a series of pre-stack depth migrations in a layer stripping streamlined Deregowski loop. Strong BSR is imaged over most of the reflection profile while low velocity zones are imaged below BSR at several locations. Amplitude versus angle analysis that are performed within the pre-stack depth migration processes reveal strong negative P-impedance near the bottom of the hydrate stability zone, commonly underlain by sharp positive P impedance layers associated with negative pseudo-Poisson attribute areas, indicating the presence of free gas below the BSR. Ray tracing of the acoustic arrivals with a model derived from the migration velocities generally fits the vertical and hydrophone records of the four ocean-bottom seismographs (OBS). In order to estimate the Poisson’s ratios in the shallow sediments at the vicinity of the OBSs, we analyze the mode-converted arrivals in the wide-angle horizontal component. P-S mode converted reflections are dominant, while upward P-S transmissions are observed at large offsets. We observe significant compressional velocity and Poisson’s ratio pull-down in the sediment below the BSR likely to bear free gas. When compared to Poisson’s ratio predicted by mechanical models, the values proposed for the OBSs yield rough estimates of gas hydrate saturation in the range of 0–10% in the layers above the BSR and of free gas saturation in the range of 0–2% just below the BSR.  相似文献   

16.
X.K. Wang  S.K. Tan 《Ocean Engineering》2008,35(5-6):458-472
The flow patterns in the near wake of a cylinder (either circular or square in shape, D=25 mm) placed in the proximity of a fully developed turbulent boundary layer (thickness δ=0.4D) are investigated experimentally using particle image velocimetry (PIV). The effects of changing the gap height (S) between the cylinder bottom and the wall surface, over the gap ratio range S/D=0.1–1.0, have been investigated. The results show that both the ensemble-averaged and instantaneous flow fields are strongly dependent on S/D. The flow patterns for the two types of cylinders share many similarities with respect to the change in S/D, such as the reduced recirculation length and increased velocity fluctuation in the near wake with increasing S/D, as well as the trend of suppression of vortex shedding at small S/D and onset of vortex shedding at large S/D. However, developments of the shear layers, in terms of wake width, flow curvature, etc., are considerably different for these two types of cylinders. In general, the wake development and momentum exchange for the square cylinder are slower those for the circular cylinder at the same gap ratio. Correspondingly, it is shown that the periodic vortex shedding is delayed and weakened in the case of square cylinder, as compared to that of the circular cylinder at the same S/D.  相似文献   

17.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   

18.
The evolution and decay of El Niño 1997–8 was observed in coastal waters off Oregon in a sequence of cruises along 44.6°N from the coast to more than 150 km offshore. Hydrographic observations were made during eleven cruises between July 1997 and April 1999 at stations on the Newport Hydrographic Line, which had been occupied regularly from 1961 to 1971. The data from the earlier decade provide a basis for defining ‘normal’ conditions and allow comparisons with the recent El Niño in terms of T, S, spiciness and geostrophic velocity. Independent of El Niño, the ocean in July 1997 was already anomalously warm offshore of 50 km and above 100 m. By September 1997 there were unambiguous indications of El Niño: isotherms and isohalines sloped down toward the coast indicating poleward flow over shelf and slope, and anomalously spicy water was present at the shelf-break. In November 1997 and February 1998 shelf-break waters were even warmer, and there was strong poleward flow inshore of 100 km, extending to depths greater than 200 m. The April 1998 section closely resembled that of April 1983 (another El Niño year) but by June 1998 the anomalies were mostly gone. November 1998 was near normal and the sections from subsequent cruises resemble the mean sections from 1961–1971.Four cruises between November 1997 and November 1998 included sampling at several latitudes between 38° and 45°N. As expected, these sections show significant alongshore gradients, but also a surprising degree of homogeneity in the anomalous features associated with El Niño (in the temperature, salinity, spiciness and geostrophic velocity fields). The anomalous signature of El Niño was stronger at its winter peak in 1998 than in 1983, but the signature in the temperature and spiciness fields, and in coastal sea level, did not persist as long as in 1983. By April 1999, the coastal ocean from 38°N to 45°N was significantly colder than it had been in April 1984.  相似文献   

19.
The most commonly used marker for the investigation of gas-hydrates is the bottom simulating reflector (BSR), which is caused by gas-hydrate laden sediment underlain by either brine or gas-saturated sediment. A BSR has been identified by seismic experiment in the Kerala-Konkan Basin of the western continental margin of India. Here we perform AVA modeling of seismic reflection data from a BSR to investigate the seismic velocities for quantitative assessment of gas-hydrates and to understand the origin of the BSR. The result reveals a P-wave velocity of 2.245 km/s and an S-wave velocity of 0.895 km/s for the sediments above the BSR. This corresponds to a Poisson ratio of 0.406 and hydrates saturation of ∼30% in the study area. The comparison of estimated P-wave velocity (1.77 km/s) above the hydrates-bearing sediment to that (1.78 km/s) below the BSR implies that the origin of the BSR is mainly due to gas-hydrates, as the presence (even in small quantities) of free-gas reduces the P-wave velocity considerably.  相似文献   

20.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号