首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interannual variability of the Indian summer monsoon rainfall has two dominant periodicities, one on the quasi-biennial (2–3 year) time scale corresponding to tropospheric biennial oscillation (TBO) and the other on low frequency (3–7 year) corresponding to El Niño Southern Oscillation (ENSO). In the present study, the spatial and temporal patterns of various atmospheric and oceanic parameters associated with the Indian summer monsoon on the above two periodicities were investigated using NCEP/NCAR reanalysis data sets for the period 1950–2005. Influences of Indian and Pacific Ocean SSTs on the monsoon season rainfall are different for both of the time scales. Seasonal evolution and movement of SST and Walker circulation are also different. SST and velocity potential anomalies are southeast propagating on the TBO scale, while they are stationary on the ENSO scale. Latent heat flux and relative humidity anomalies over the Indian Ocean and local Hadley circulation between the Indian monsoon region and adjacent oceans have interannual variability only on the TBO time scale. Local processes over the Indian Ocean determine the Indian Ocean SST in biennial periodicity, while the effect of equatorial east Pacific SST is significant in the ENSO periodicity. TBO scale variability is dependent on the local factors of the Indian Ocean and the Indian summer monsoon, while the ENSO scale processes are remotely controlled by the Pacific Ocean.  相似文献   

2.
Atmospheric dynamical mechanisms have been prevalently used to explain the characteristics of the summer monsoon intraseasonal oscillation (MISO), which dictates the wet and dry spells of the monsoon rainfall. Recent studies show that ocean–atmosphere coupling has a vital role in simulating the observed amplitude and relationship between precipitation and sea surface temperature (SST) at the intraseasonal scale. However it is not clear whether this role is simply ‘passive’ response to the atmospheric forcing alone, or ‘active’ in modulating the northward propagation of MISO, and also whether the extent to which it modulates is considerably noteworthy. Using coupled NCEP–Climate Forecast System (CFSv2) model and its atmospheric component the Global Forecast System (GFS), we investigate the relative role of the atmospheric dynamics and the ocean–atmosphere coupling in the initiation, maintenance, and northward propagation of MISO. Three numerical simulations are performed including (1) CFSv2 coupled with high frequency interactive SST, the GFS forced with both (2) observed monthly SST (interpolated to daily) and (3) daily SST obtained from the CFSv2 simulations. Both CFSv2 and GFS simulate MISO of slightly higher period (~60 days) than observations (~45 days) and have reasonable seasonal rainfall over India. While MISO simulated by CFSv2 has realistic northward propagation, both the GFS model experiments show standing mode of MISO over India with no northward propagation of convection from the equator. The improvement in northward propagation in CFSv2, therefore, may not be due to improvement of the model physics in the atmospheric component alone. Our analysis indicates that even with the presence of conducive vertical wind shear, the absence of meridional humidity gradient and moistening of the atmosphere column north of convection hinders the northward movement of convection in GFS. This moistening mechanism works only in the presence of an ‘active’ ocean. In CFSv2, the lead-lag relationship between the atmospheric fluxes, SST and convection are maintained, while such lead-lag is unrealistic in the uncoupled simulations. This leads to the conclusion that high frequent and interactive ocean–atmosphere coupling is a necessary and crucial condition for reproducing the realistic northward propagation of MISO in this particular model.  相似文献   

3.
In spring over the southern Bay of Bengal (BOB), a vortex commonly develops, followed by the Asian summer monsoon onset. An analysis of relevant data and a case study reveals that the BOB monsoon onset vortex is formed as a consequence of air–sea interaction over BOB, which is modulated by Tibetan Plateau forcing and the land–sea thermal contrast over the South Asian area during the spring season. Tibetan Plateau forcing in spring generates a prevailing cold northwesterly over India in the lower troposphere. Strong surface sensible heating is then released, forming a prominent surface cyclone with a strong southwesterly along the coastal ocean in northwestern BOB. This southwesterly induces a local offshore current and upwelling, resulting in cold sea surface temperatures (SSTs). The southwesterly, together with the near-equatorial westerly, also results in a surface anticyclone with descending air over most of BOB and a cyclone with ascending air over the southern part of BOB. In the eastern part of central BOB, where sky is clear, surface wind is weak, and ocean mixed layer is shallow, intense solar radiation and low energy loss due to weak surface latent and sensible heat fluxes act onto a thin ocean layer, resulting in the development of a unique BOB warm pool in spring. Near the surface, water vapor is transferred from northern BOB and other regions to southeastern BOB, where surface sensible heating is relatively high. The atmospheric available potential energy is generated and converted to kinetic energy, thereby resulting in vortex formation. The vortex then intensifies and moves northward, where SST is higher and surface sensible heating is stronger. Meanwhile, the zonal-mean kinetic energy is converted to eddy kinetic energy in the area east of the vortex, and the vortex turns eastward. Eventually, southwesterly sweeps over eastern BOB and merges with the subtropical westerly, leading to the onset of the Asian summer monsoon.  相似文献   

4.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

5.
The Indian summer monsoon (ISM) is largely influenced by intra-seasonal variability like break and active phases of monsoon. In the present study, different cloud and aerosol parameters are considered and analyzed to formulate a cloud–aerosol coupled index (CACI) that can aid in forecasting the break phase of ISM. The method of principal component analysis is implemented to identify the significant cloud and aerosol parameters during break and active phases of ISM. The threshold ranges of each parameter are evaluated by using the normal probability density function. The result reveals that for break phase, the significant parameters are cloud water path (CWP), cloud optical depth, aerosol index, zonal wind (ZW), and meridional wind (MW) at 850 hPa pressure level whereas for active phase, the parameters found to be important are aerosol optical depth, CWP, ZW, and MW at 850 hPa pressure level. The significantly correlated (p?相似文献   

6.
7.
The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.  相似文献   

8.
9.
Historical annual dry–wet index for 1470–2003 combined with instrumental precipitation since 1951 were used to identify extremely dry years and events near the northern fringe of the East Asian summer monsoon in China—the Great Bend of the Yellow River (GBYR) region. In total, 49 drought years, of which 26 were severe, were identified. Composites of the dry–wet index under the drought years show an opposite wet pattern over the Southeast China. The longest drought event lasted for 6?years (1528–1533), the second longest one 4?years (1637–1640). The most severe 2-year-long drought occurred in 1928–1929, and the two driest single years were 1900 and 1965. These persistent and extreme drought events caused severe famines and huge losses of human lives. Wavelet transform applied to the dry–wet index indicates that the severe drought years are nested in several significant dry–wet variations across multiple timescales, i.e., the 65–85?year timescale during 1600– 1800, 40–55?year timescale before 1640 and 20–35?year timescale mainly from 1550 to 1640. These timescales of dry–wet variations are discussed in relation to those forcing such as cycles of solar radiation, oscillation in the thermohaline circulation and the Pacific Decadal Oscillation (PDO). Comparing 850?hPa winds in Asia in extremely dry and wet years, it was concluded that dry–wet variability in the GBYR region strongly depends upon whether the southerly monsoon flow can reach northern China.  相似文献   

10.
The reproducibility of boreal summer intraseasonal variability (ISV) and its interannual variation by dynamical models are assessed through diagnosing 21-year retrospective forecasts from ten state-of-the-art ocean–atmosphere coupled prediction models. To facilitate the assessment, we have defined the strength of ISV activity by the standard deviation of 20–90 days filtered precipitation during the boreal summer of each year. The observed climatological ISV activity exhibits its largest values over the western North Pacific and Indian monsoon regions. The notable interannual variation of ISV activity is found primarily over the western North Pacific in observation while most models have the largest variability over the central tropical Pacific and exhibit a wide range of variability in spatial patterns that are different from observation. Although the models have large systematic biases in spatial pattern of dominant variability, the leading EOF modes of the ISV activity in the models are closely linked to the models’ El Nino-Southern Oscillation (ENSO), which is a feature that resembles the observed ISV and ENSO relationship. The ENSO-induced easterly vertical shear anomalies in the western and central tropical Pacific, where the summer mean vertical wind shear is weak, result in ENSO-related changes of ISV activity in both observation and models. It is found that the principal components of the predicted dominant modes of ISV activity fluctuate in a very similar way with observed ones. The model biases in the dominant modes are systematic and related to the external SST forcing. Thus the statistical correction method of this study based on singular value decomposition is capable of removing a large portion of the systematic errors in the predicted spatial patterns. The 21-year-averaged pattern correlation skill increases from 0.25 to 0.65 over the entire Asian monsoon region after applying the bias correction method to the multi-model ensemble mean prediction.  相似文献   

11.
Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro–Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land–sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Niño (La Niña)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Niño (La Niña)-like SST anomalies also induces colder (warmer) tropospheric temperature over Eurasia and warmer (colder) tropospheric temperature over the Indian Ocean. The associated negative (positive) meridional gradient of the tropospheric temperature anomalies is consistent with the existence of the weak (strong) Asian summer monsoon.  相似文献   

12.
We present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model’s skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models.  相似文献   

13.
14.
合成分析了La Ni?a年东亚夏季风和东亚夏季降水的季节内变化。结果表明,La Ni?a年夏季暖池对流偏强,西太平洋出现异常气旋,西太平洋副高偏向东北。这种异常型随季节进程有明显变化,7月异常达到最大。La Ni?a年东亚降水呈纬向型分布,中国东部降水偏少,西太平洋海面降水偏多。与此相比,El Ni?o年降水呈经向型分布,热带降水偏少,副热带和中纬度降水偏多。因此,不能简单将La Ni?a的影响认为是El Ni?o的反对称。  相似文献   

15.
J. Fasullo 《Climate Dynamics》2012,39(5):1137-1147
A central paradox of the global monsoon record involves reported decreases in rainfall over land during an era in which the global hydrologic cycle is both expected and observed to intensify. It is within this context that this work develops a physical basis for both interpreting the observed record and anticipating changes in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared feedbacks. The global-land monsoon record across multiple reanalyses is first assessed. Trends that in other studies have been taken as real are shown to likely be spurious as a result of changes in the assimilated data streams both prior to and during the satellite era. Nonetheless, based on satellite estimates, robust increases in monsoon rainfall over ocean do exist and a physical basis for this land–ocean contrast remains lacking. To address the contrast’s causes, simulated trends are therefore assessed. While projections of total rainfall are inconsistent across models, the robust land–ocean contrast identified in observations is confirmed. A feedback mechanism is proposed rooted in the facts that land areas warm disproportionately relative to ocean, and onshore flow is the chief source of monsoonal moisture. Reductions in lower tropospheric relative humidity over land domains are therefore inevitable and these have direct consequences for the monsoonal convective environment including an increase in the lifting condensation level and a shift in the distribution of convection generally towards less frequent and potentially more intense events. The mechanism is interpreted as an important modulating influence on the “rich-get-richer” mechanism. Caveats for regional monsoons exist and are discussed.  相似文献   

16.
17.
Summary The dynamical characteristics of Asian summer monsoon are examined with a global spectral model. In addition to the seasonal circulation features, the large scale budgets of kinetic energy, vorticity and angular momentum are examined making use of mean analysis and forecast fields (upto day 5) for summer season comprising June, July and August, (JJA) 1994. Apart from elucidating the systematic errors over the monsoon region, the study expounded the influence of these errors on associated dynamics.The significant errors in the low level flow (850 hPa) evince (i) weakening of south easterly trades and cross equatorial flow into the Northern Hemisphere and (ii) weakening of westerly flow over the North Indian Ocean. Similarly, in the upper level flow (200 hPa) they indicate (i) weakening of Tibetan anti-cyclone and (ii) reduction of return flow into the Southern Hemisphere.The balance requirements in the mean analysis as well as forecast fields are fairly in agreement with the observed over the summer monsoon. The monsoon domain is discerned as the source region of kinetic energy and vorticity. Both are produced in the monsoon region and transported horizontally across. The model forecasts fail to retain the analyzed atmospheric variability in terms of mean as well as transient circulations which is revealed by kinetic energy budget. This is further corroborated by vorticity and angular momentum budgets. It is noticed that the forecasts in all ranges produce feeble monsoon circulation which weakens considerably with increase in the forecast period.With 16 Figures  相似文献   

18.
The inter-basin teleconnection between the North Atlantic and the North Pacific ocean–atmosphere interaction is studied using a coupled ocean–atmosphere general circulation model. In the model, an idealized oceanic temperature anomaly is initiated over the Kuroshio and the Gulf Stream extension region to track the coupled evolution of ocean and atmosphere interaction, respectively. The experiments explicitly demonstrate that both the North Pacific and the North Atlantic ocean–atmosphere interactions are intimately coupled through an inter-basin atmospheric teleconnection. This fast inter-basin communication can transmit oceanic variability between the North Atlantic and the North Pacific through local ocean-to-atmosphere feedbacks. The leading mode of the extratropical atmospheric internal variability plays a dominant role in shaping the hemispheric-scale response forced by oceanic variability over the North Atlantic and Pacific. Modeling results also suggest that a century (two centuries) long observations are necessary for the detection of Pacific response to Atlantic forcings (Atlantic response to Pacific forcing).  相似文献   

19.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号