首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of our study indicate that at the Late Cretaceous–Paleogene boundary in the southeastern part of the Amur–Zeya Basin, the sedimentation conditions changed drastically, namely, the change of provenance areas of debris. In the Maastrichtian, the clastic material was mainly transported from the Bureya–Jiamusi Superterrane and the volcanic–plutonic belts of Khingan–Okhotsk and East Sikhote–Alin located to the east: sedimentation occurred simultaneously with magmatic activity. During the Danian Stage, the major source of debris to the southern part of the basin was located to the south of the young mountain system of the Lesser Khingan (the uplifted part of the basement of the Songliao Block).  相似文献   

2.
A.S. Yakubchuk   《Ore Geology Reviews》2009,35(3-4):447-454
The orogenic collages of the northern Circum-Pacific between Japan and Alaska revealed an endowment of about 450 Moz Au in various deposit types and diverse Mesozoic–Cenozoic tectonic settings. The area consists of predominantly late Paleozoic to Cenozoic turbidite to island arc terranes as well as Precambrian cratonic terranes that can be grouped into the Kolyma–Alaska, Kamchatka–Aleutian, and Nipponide collages. The latter can be linked via the Mongol–Okhotsk suture with the late Paleozoic to early Mesozoic terranes in the Mongolides.The early Yanshanian magmatic arc terranes in the fossil Kolyma–Alaska collage host copper–gold porphyry deposits, which have only recently received much attention. Exploration has revealed a large and growing gold endowment of more than 30 Moz Au in some individual deposits, with smaller role of epithermal deposits. This mineralization, formed at 140–125 Ma, is partly coeval with the collisions of magmatic arcs with the passive margin sequences of the Siberian craton and related granitoid magmatism. About 200 Moz of gold is known in the Kolyma–Alaska collage in the Mesozoic orogenic gold deposits and related Quaternary placers. The Central Kolyma, Indigirka, South Verkhoyansk, and North Chukotka subprovinces of the collage revealed an endowment of more than 10 Moz Au each. A similar and coeval event in the Mongolides in relation to the collision between Siberia and North China is largely reflected in still poorly dated intrusion-related gold deposits clustered along the Mongol–Okhotsk suture.The overlapping Yanshanian magmatic arcs in Transbaikalia and northeast China and the Okhotsk–Chukotka magmatic arc in the Russian Far East stitch the Kolyma–Alaska collage with the Paleozoic Central Asian supercollage and adjacent cratons. While the Okhotsk–Chukotka arc reveals a relatively simple and broad oroclinal pattern, the Yanshanian arcs in Mongolia, and NE China form a tightly deformed giant Z-shaped feature that was bent in response to the southward movement of the Siberian craton and northward translation of the Nipponides and North China craton to close the Mongol–Okhotsk suture in late Jurassic to Cretaceous times. The Yanshanian arcs host mostly small to medium-sized 100–70 Ma Au–Ag deposits, with the largest endowment discovered in the Baley district in Transbaikalia and at Kupol in the northern part of the Okhotsk–Chukotka arc. Some intrusion-related gold deposits were formed synchronously with this arc magmatism, with the largest known examples in the Tintina belt in Alaska formed at 104 and 93–91 Ma.The Kamchatka–Aleutian collage is still evolving in front of the westward-subducting Pacific plate. It's late Cretaceous to Paleogene magmatic arc rocks form immature island arc terranes, extending from the Aleutian islands towards the Nipponides via Kamchatka peninsula, Kuril islands and eastern Sakhalin. However, in the Nipponides, the Sikhote–Alin portion of the magmatic arc overlaps the Mesozoic turbidite terranes. The oroclinal pattern of this more than 8000 km-long magmatic arc indicates its westward translation in agreement with the movement of the Pacific plate so that the arc is presently colliding with itself along the island of Sakhalin, a seismically active intraplate lineament and a boundary between the Nipponide and Kamchatka–Aleutian collages. This magmatic arc is usually interpreted to be of intra-oceanic origin, with subsequent docking to Asia from the south; however, presence of the Sea of Okhotsk cratonic terrane between Sakhalin and Kamchatka suggests that it may be rather considered as an external arc system that separated from the rest of Asia due to backarc spreading events, therefore, forming the most external arc system at the active margin with the Pacific plate. The subduction-related events in the collage produced numerous late Mesozoic to Cenozoic 1–3 Moz gold epithermal deposit in Kamchatka and Sikhote–Alin as well as Au–Cu porphyry deposits, with currently largest gold endowment in the pre-Tertiary Pebble Copper deposit in Alaska. The westward translation of the Kamchatka–Aleutian collage might have controlled the emplacement of this porphyry deposit, as well as up to 30 Moz into intrusion-related gold deposits at 70–65 Ma in the Kuskokwim belt, immediately north from the porphyry cluster.  相似文献   

3.
The composition of sandstones constituting different structural stages of the Jurassic accretionary wedge in the Samarka (upper and middle? structural levels in the Lyamfana Creek and Katen River basins, respectively) and Nadan’khada-Bikin (lower level in the Ulitka River basin) terranes of the Sikhote Alin region reflects changes in provenances and tectonic settings of the near-continental sedimentation basin in different periods of the wedge formation. In the terminal Middle Jurassic (Lyamfana Creek), the region was dominated by the subduction regime with sedimentary material transported from the eroded part of the continental-margin magmatic arc. During the Kimmeridgian-Tithonian (Katen River), erosion of granitoid batholiths of the arc exposed blocks of the crystalline basement along strike-slip faults. In the Tithonian-Berriasian period (Ulitka River), the role of these blocks increased, suggesting intensification of oblique subduction or development of transform faults during the accretion.  相似文献   

4.
The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts.The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction–accretion, paired metamorphism, arc volcanism, back-arc spreading and arc–arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous–Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1–2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc–arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc–arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.  相似文献   

5.
Abstract: Seven zircon fission-track ages and 30 magnetic susceptibilities were measured on welded pyroclastic rocks from the Bogopol and Sijanov Groups of the Cretaceous to Paleogene volcanic rocks in the southeastern part of the eastern Sikhote Alin volcano-plutonic belt, Far East Russia. The fission-track ages range from 42. 7 Ma to 64. O Ma which indicate that both the groups are of Early Paleogene time. Two thirds of the samples from the Bogopol Group have high magnetic susceptibility values, more than 3 A- 10-3 SI unit, which imply that they are of the magnetite–series, whereas the samples from the Sijanov Group show 3 A- 10-3 to 8 A- 10-5 SI unit which suggest this group of probably the ilmenite-series.
The Paleogene age and high magnetic susceptibility of the Bogopol Group are quite similar to the Paleogene igneous rocks of the San'in belt, Southwest Japan. This suggests, taking accounts of the opening of the Japan Sea, that the eastern Sikhote Alin volcano-plutonic belt continued to the San'in Belt, and that the Paleogene igneous rocks along the Japan Sea coast of Northeast Japan were situated along the volcanic front of the eastern Sikhote Alin volcano-plutonic belt.  相似文献   

6.
New or “juvenile” crust forms and grows mainly through mafic to andesitic magmatism at Pacific-type or accretionary type convergent margins as well as via tectonic accretion of oceanic and island-arc terranes and translation of continental terranes. During the last decades the juvenile or recycled nature of crust has been commonly evaluated using whole-rock isotope and Hf-in-zircon isotope methods. However, evidence for the accretionary or Pacific-type nature of an orogenic belt comes from geological data, for example, from the presence of accretionary complexes (AC), intra-oceanic arcs (IOA), oceanic plate stratigraphy units (OPS), and MORB-OIB derived blueschist belts (BSB). The Central Asian Orogenic Belt (CAOB) represents the world's largest province of Phanerozoic juvenile crustal growth during ca. 800 m.y. between the East European, Siberian, North China and Tarim cratons. From geological point of view, the CAOB is a typical Pacific-type belt as it hosts numerous occurrences of accretionary complexes, intra-oceanic arcs, OPS units, and MORB-OIB derived blueschist belts. In spite of its accretionary nature, supported by positive whole rock Nd isotope characteristics in CAOB granitoids, the Hf-in-zircon isotope data reveal a big portion of recycled crust. Such a controversy can be explained by presence of accreted microcontinents, isotopically mixed igneous reservoirs and by the tectonic erosion of juvenile crust. The most probable localities of tectonic erosion in the CAOB are the middle and southern Tienshan and southern Transbaikalia because these regions comprise a predominantly recycled crust (based on isotope data), but the geological data show the presence of intra-oceanic arcs, blueschist belts and accreted OPS with oceanic island basalts (OIB) and tectonically juxtaposed coeval arc granitoids and accretionary units. This warrants combination of detailed geological studies with isotopic results, as on their own they may not reflect such processes as tectonic erosion of juvenile crust and/or arc subduction.  相似文献   

7.
The eastern pari of the Xing-Meng Orogenic Belt( XMOB )consists of the Lesser Xing'an-Zhangguangcai Range Orogenic belt, the Bureya-Jiamusi-khanka Block and the Sikhote-Alin accretionary belt. This area is located between the Paleo-Asian oceanic and Paleo-Pacific tectonic regimes. Recent researches imply that the Paleo-Pacific subduction might have begun since early Permian and influenced the both sides of the Mudanjiang Fault during Triassic, which generated a N-S trending magmatic belt and accretionary complexes, such as the Heilongjiang Complex. In Late Jurassic to Early Cretaceous, some tectono st rati graph ic terranes were produced in Sikhote-Alin, which were then dismembered and migrated northwards in late Early Cretaceous by sinistral strike-slip faults. The continental margin parallel transportion weakened subduction-related magmatism in NE China which was under an extensional setting. However, in Lite Cretaceous, the Paleo-Pacific subduction was re-Activated in the eastern XMOB, which contributed to the magmatism in Sikhote-Alin.  相似文献   

8.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   

9.
ABSTRACT

A Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust.  相似文献   

10.
《International Geology Review》2012,54(14):1801-1816
We present new geochronological and geochemical data for granites and volcanic rocks of the Erguna massif, NE China. These data are integrated with previous findings to better constrain the nature of the massif basement and to provide new insights into the subduction history of Mongol–Okhotsk oceanic crust and its closure. U–Pb dating of zircons from 12 granites previously mapped as Palaeoproterozoic and from three granites reported as Neoproterozoic yield exclusively Phanerozoic ages. These new ages, together with recently reported isotopic dates for the metamorphic and igneous basement rocks, as well as Nd–Hf crustal-residence ages, suggest that it is unlikely that pre-Mesoproterozoic basement exists in the Erguna massif. The geochronological and geochemical results are consistent with a three-stage subduction history of Mongol–Okhotsk oceanic crust beneath the Erguna massif, as follows. (1) The Erguna massif records a transition from Late Devonian A-type magmatism to Carboniferous adakitic magmatism. This indicates that southward subduction of the Mongol–Okhotsk oceanic crust along the northern margin of the Erguna massif began in the Carboniferous. (2) Late Permian–Middle Triassic granitoids in the Erguna massif are distributed along the Mongol–Okhotsk suture zone and coeval magmatic rocks in the Xing’an terrane are scarce, suggesting that they are unlikely to have formed in association with the collision between the North China Craton and the Jiamusi–Mongolia block along the Solonker–Xra Moron–Changchun–Yanji suture zone. Instead, the apparent subduction-related signature of the granites and their proximity to the Mongol–Okhotsk suture zone suggest that they are related to southward subduction of Mongol–Okhotsk oceanic crust. (3) A conspicuous lack of magmatic activity during the Middle Jurassic marks an abrupt shift in magmatic style from Late Triassic–Early Jurassic normal and adakite-like calc-alkaline magmatism (pre-quiescent episode) to Late Jurassic–Early Cretaceous A-type felsic magmatism (post-quiescent episode). Evidently a significant change in geodynamic processes took place during the Middle Jurassic. Late Triassic–Early Jurassic subduction-related signatures and adakitic affinities confirm the existence of subduction during this time. Late Jurassic–Early Cretaceous post-collision magmatism constrains the timing of the final closure of the Mongol–Okhotsk Ocean involving collision between the Jiamusi–Mongolia block and the Siberian Craton to the Middle Jurassic.  相似文献   

11.
The Amur and Kiselevka–Manoma accretionary complexes belong to the Cretaceous Khingan–Okhotsk active continental margin, which was formed in the east of Eurasia as a result of the subduction of the Pacific oceanic plates. The Kiselevka–Manoma complex is composed of oceanic pelagic and hemipelagic sedimentary rocks and intraplate oceanic basalts. It is located to the southeast, along the ocean-faced front of the Amur complex, which is predominantly composed of turbidites of the convergent boundary of lithospheric plates. The biostratigraphic study of radiolarians from rocks of the frontal part of the Amur complex allowed us to correlate them with rocks of the Kiselevka–Manoma complex and to define the period of accretion to be from the Late Aptian to the Middle Albian. The tectonostratigraphic interrelations of these two contrasting lithotectonic complexes are established and two possible models of their common emplacement are suggested. Both models suppose a continuous spatiotemporal relation of complexes with the primary paleolocation of the Kiselevka–Manoma complex in front of (on the ocean side) the Amur complex. The frontal part of the Amur complex and the Kiselevka–Manoma complex were emplaced synchronously with the western part of the East Sakhalin accretionary complex. This scenario defines the Early Cretaceous tectonic zonation of the region and the choice of the appropriate paleotectonic model. At the end of the Early Cretaceous, a single convergent boundary of the lithospheric plates is suggested with the position of the Sakhalin island arc system south of the Khingan–Okhotsk active continental margin.  相似文献   

12.
The chemical and trace-element features of the Late Cretaceous and Early Paleogene ignimbrite complexes of East Sikhote Alin are discussed. The Turonian-Campanian volcanic rocks of the Primorsky Complex compose linear structure of the Eastern Sikhote Alin volcanic belt. They are represented by crystalrich rhyolitic, rhyodacitic, and dacitic S-type plateau ignimbrites produced by fissure eruptions of acid magmas. The Maastrichtian-Paleocene volcanic rocks occur as isolated volcanic depression and caldera structures, which have no structural and spatial relations with the volcanic belt. This period is characterized by bimodal volcanism. The Samarginsky, Dorofeevsky, and Severyansky volcanic complexes are made up of basalt-andesite-dacite lavas and pyroclastic rocks, while the Levosobolevsky and Siyanovsky complexes are comprised of rhyolitic and dacitic tuffs and ignimbrites. Petrogeochemically, the felsic volcanic rocks are close to the S-type plateau ignimbrites of the Primorsky Complex. The Paleocene-Early Eocene silicic volcanics of the Bogopolsky Complex are represented by S- and A-type dacitic and rhyolitic tuffs and ignimbrites filling collapsed calderas. The eruption of A-type ferroan hyaloignimbrites occurred at the final stage of the Paleogene volcanism (Bogopolsky Complex). The magmatic rocks show well expressed mineralogical and geochemical evidence for the interaction between the crustal magmas and enriched sublithospheric mantle. It was shown that the revealed differences in the mineralogical and geochemical composition of the ignimbrite complexes are indicative of a change in the geodynamic regime of the Asian active continental margin at the Mesozoic-Cenozoic transition.  相似文献   

13.
文章评述了增生造山作用的研究历史和进展,认为增生造山作用贯穿地球历史,是大陆增生的重要方式。用大陆边缘多岛弧盆系构造理解造山带的形成演化,提出巨型造山系的形成与长期发育的大洋岩石圈俯冲制约的两侧或一侧的多岛弧盆系密切相关。在多岛弧盆系演化过程中的弧 弧和弧 陆碰撞,弧前和弧后洋盆的消减冲杂岩的增生,洋底高原、洋岛/海山、外来地块(体)拼贴等一系列碰撞和增生造山作用形成大陆边缘增生造山系。大洋岩石圈最终消亡形成对接消减带,大洋岩石圈两侧的多岛弧盆系转化的造山系对接形成造山系的联合体。拼接完成后往往要继续发生大陆之间的陆 陆碰撞造山作用、陆内汇聚(伸展)作用,后者叠加在增生造山系上,使造山过程更加复杂。对接消减带是认识造山系形成演化的关键。大洋两侧多岛弧盆系经历的各种造山过程可以从广义上理解为一个增生造山过程。多岛弧盆系研究对于划分造山带细结构非常重要,是理解造山系物质组成、结构和构造的基础,并制约了造山后陆内构造演化。大陆碰撞前大洋两侧多岛弧盆系及陆缘系统更完整地记录了威尔逊旋回,记录的信息更加丰富。根据多岛弧盆系的思路对特提斯大洋演化提出新的模式,认为西藏冈底斯带自石炭纪以来受到特提斯大洋俯冲制约,三叠纪发生向洋增生造山作用,特提斯大洋于早白垩世末最终消亡。  相似文献   

14.
本文系统总结了东北亚陆缘晚古生代和中生代增生杂岩的构成与形成时代,并结合同时代火成岩组合及其时空变异以及沉积建造组合,重塑了西太平洋板块俯冲带的演变历史.结果表明:①位于佳木斯地块东缘的跃进山杂岩代表了二叠纪俯冲带,它是古亚洲洋构造体制的产物;②侏罗纪增生杂岩代表了侏罗纪俯冲带,与陆缘同期钙碱性火成岩组合以及含煤建造一...  相似文献   

15.
The origin and continuity of Phanerozoic lithostratigraphic terranes in southern and Baja California remain an unsolved issue in Cordilleran tectonics. We present data from eight detrital zircon samples collected across the southern extent of the Peninsular Ranges that help constrain the provenance of detritus and the depositional ages of these basement units. Detrital zircon signatures from units in the eastern Peninsular Ranges correlate with Palaeozoic passive margin assemblages in the southwestern North American Cordillera. Units in the central belt, which consists of Triassic–Jurassic metasedimentary turbidite assemblages that probably deformed in an accretionary prism setting, and Cretaceous metasedimentary and metavolcanic units that represent the remnants of a continental margin arc, were derived from both proximal and more distal sources. The westernmost units, which are locally structurally interleaved with the Triassic through Cretaceous units of the central belt, are Cretaceous deposits that represent a series of collapsed basin complexes located within and flanking the Cretaceous Alisitos volcanic island arc. Cretaceous intra-arc units show little influx of cratonal material until approximately 110 Ma, whereas coeval sediments on the northern and eastern flanks of the Alisitos arc contain abundant cratonal detritus. Intra-arc strata younger than approximately 110 Ma contain large amounts of Proterozoic and older detrital zircons. These data suggest that basins associated with the Alisitos arc were either too distant or somehow shielded from North American detritus before 110 Ma. In the case of the former, increased influx of continental detritus after 110 Ma would support a tectonic model in which the arc was separated from North America by an ocean basin and, as the arc approached the continent, associated depositional centres were close enough to receive input from continental sources.  相似文献   

16.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   

17.
Zircon U-Pb ages of 163.8–100.4 Ma and 146.6–134.5?Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165–100?Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165–150?Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148–130?Ma) to the Pearl River Mouth basin (127–112?Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108–97?Ma. A tectonic transformation from slab-subduction to extension should occur at ~100?Ma.  相似文献   

18.
The Meso-Cenozoic geodynamic evolution of the eastern Pontides orogenic belt provides a key to evaluate the volcanogenic massive sulfide (VMS) deposits associated with convergent margin tectonics in a Cordilleran-type orogenic belt. Here we present new geological, geochemical and zircon U–Pb geochronological data, and attempt to characterize the metallogeny through a comprehensive overview of the important VMS mineralizations in the belt. The VMS deposits in the northern part of the eastern Pontides orogenic belt occur in two different stratigraphic horizons consisting mainly of felsic volcanic rocks within the late Cretaceous sequence. SHRIMP zircon U–Pb analyses from ore-bearing dacites yield weighted mean 206Pb/238U ages ranging between 91.1 ± 1.3 and 82.6 ± 1 Ma. The felsic rocks of first and second horizons reveal geochemical characteristics of subduction-related calc-alkaline and shoshonitic magmas, respectively, in continental arcs and represent the immature and mature stages of a late Cretaceous magmatic arc. The nature of the late Cretaceous magmatism in the northern part of the eastern Pontides orogenic belt and the various lithological associations including volcaniclastics, mudstones and sedimentary facies indicate a rift-related environment where dacitic volcanism was predominant. The eastern Pontides VMS deposits are located within the caldera-like depressions and are closely associated with dome-like structures of felsic magmas, with their distribution controlled by fracture systems. Based on a detailed analyses of the geological, geophysical and geodynamic information, we propose that the VMS deposits were generated either in intra arc or near arc region of the eastern Pontides orogenic belt during the southward subduction of the Tethys oceanic lithosphere.  相似文献   

19.
The Cordilleran orogen in south-eastern Alaska includes 14 distinct metamorphic belts that make up three major metamorphic complexes, from east to west: the Coast plutonic–metamorphic complex in the Coast Mountains; the Glacier Bay–Chichagof plutonic–metamorphic complex in the central part of the Alexander Archipelago; and the Chugach plutonic–metamorphic complex in the northern outer islands. Each of these complexes is related to a major subduction event. The metamorphic history of the Coast plutonic–metamorphic complex is lengthy and is related to the Late Cretaceous collision of the Alexander and Wrangellia terranes and the Gravina overlap assemblage to the west against the Stikine terrane to the east. The metamorphic history of the Glacier Bay–Chichagof plutonic–metamorphic complex is relatively simple and is related to the roots of a Late Jurassic to late Early Cretaceous island arc. The metamorphic history of the Chugach plutonic–metamorphic complex is complicated and developed during and after the Late Cretaceous collision of the Chugach terrane with the Wrangellia and Alexander terranes. The Coast plutonic–metamorphic complex records both dynamothermal and regional contact metamorphic events related to widespread plutonism within several juxtaposed terranes. Widespread moderate-P/T dynamothermal metamorphism affected most of this complex during the early Late Cretaceous, and local high-P/T metamorphism affected some parts during the middle Late Cretaceous. These events were contemporaneous with low- to moderate-P, high-T metamorphism elsewhere in the complex. Finally, widespread high-P–T conditions affected most of the western part of the complex in a culminating late Late Cretaceous event. The eastern part of the complex contains an older, pre-Late Triassic metamorphic belt that has been locally overprinted by a widespread middle Tertiary thermal event. The Glacier Bay–Chichagof plutonic–metamorphic complex records dominantly regional contact-metamorphic events that affected rocks of the Alexander and Wrangellia terranes. Widespread low-P, high-T assemblages occur adjacent to regionally extensive foliated granitic, dioritic and gabbroic rocks. Two closely related plutonic events are recognized, one of Late Jurassic age and another of late Early and early Late Cretaceous age; the associated metamorphic events are indistinguishable. A small Late Devonian or Early Mississippian dynamothermal belt occurs just north-east of the complex. Two older low-grade regional metamorphic belts on strike with the complex to the south are related to a Cambrian to Ordovician orogeny and to a widespread Middle Silurian to Early Devonian orogeny. The Chugach plutonic–metamorphic complex records a widespread late Late Cretaceous low- to medium/high-P, moderate- T metamorphic event and a local transitional or superposed early Tertiary low-P, high-T regional metamorphic event associated with mesozonal granitic intrusions that affected regionally deformed and metamorphosed rocks of the Chugach terrane. The Chugach complex also includes a post-Late Triassic to pre-Late Jurassic belt with uncertain relations to the younger belts.  相似文献   

20.
Middle Paleozoic to Middle Jurassic terrane assemblies in the Klamaths and Sierran Foothills consist of mafic–ultramafic complexes + fine‐grained terrigenous strata derived from previously accreted continental‐margin belts. Sutured oceanic terranes reflect c. 230 Myr of margin‐parallel slip involving chiefly transtension and transpression. Quartzofeldspathic clastic rocks and blueschists ± eclogites are very rare. Little devolatilization occurred at magmagenic depths; hence, coeval hydrothermal ore deposits and granitoids are uncommon. In contrast, nearly head‐on Cretaceous subduction of the Farallon plate generated the massive Klamath–Sierra Nevada volcanic–plutonic arc, reflecting dewatering of the eastward descending oceanic lithosphere in the magmagenic zone. Immature Great Valley forearc and Franciscan trench deposits shed from the arc record c. 70 Myr. of rapid crustal growth. Au‐bearing solutions rising from magmagenic depths, exsolved from plutons, and expelled from heated wall rocks were mobilized attending arc construction. Precipitation of gold‐bearing quartz veins occurred where H2O + CO2‐bearing fluids encountered major geochemical discontinuities in the wall rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号