首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 From heat capacities measured adiabatically at low temperatures, the standard entropies at 298.15 K of synthetic rutile (TiO2) and nepheline (NaAlSiO4) have been determined to be 50.0 ± 0.1 and 122.8 ± 0.3 J mol−1 K, respectively. These values agree with previous measurements and in particular confirm the higher entropy of nepheline with respect to that of the less dense NaAlSiO4 polymorph carnegieite. Received: 23 July 2001 / Accepted: 12 October 2001  相似文献   

2.
This study investigated the performance of UV light active TiO2 and UV–visible light active WO3/TiO2 nanoparticles as air purifying materials that can be potentially applied to urban green infrastructures such as rain gardens and pervious pavements. Using a laboratory-scale continuous gas flow photoreactor, the removal efficiency of gaseous nitrogen oxide (NO x ) by two different photocatalytic nanoparticles coated on natural zeolites and pervious concrete blocks was evaluated. The results showed that the TiO2- and WO3/TiO2-coated zeolites are excellent photoactive materials providing enhanced air purification function (~95% removal efficiency of NO x ) under UV and UV–visible light irradiation, respectively. In contrast, both of the TiO2- and WO3/TiO2-coated pervious concrete blocks showed a measurable NO x removal (~60%) only under UV irradiation, whereas the visible light activity of the WO3/TiO2-coated concrete block was significantly reduced (~20%) mainly due to the decrease in the photocatalytic reaction sites for visible light. This study revealed the potential utility of photocatalytic nanoparticles in improving urban air quality, in the form of the surface component of various urban infrastructures.  相似文献   

3.
The transition between rutile and α-PbO2 structured TiO2 (TiO2II) has been investigated at 700–1,200 °C and 4.2–9.6 GPa. Hydrothermal phase equilibrium experiments were performed in the multi-anvil apparatus to bracket the phase boundary at 700, 1,000, and 1,200 °C. The equilibrium phase boundary is described by the equation: P (GPa)=1.29+0.0065 T ( °C). In addition, growth of TiO2II was observed in experiments at 500 and 600 °C, although growth of rutile was too slow to bracket unambiguously the equilibrium boundary at these temperatures. Water was not detected in either rutile or TiO2II, and dry synthesis experiments at 1,200 °C were consistent with the phase boundary determined in the fluid-bearing experiments, suggesting that the equilibrium is unaffected by the presence of water. Our bracket of the phase boundary at 700 °C is consistent with the reversed, dry experiments of Akaogi et al. (1992) and the reversals of Olsen et al. (1999). The new data suggest that the phase boundary is linear, in agreement with Akaogi et al. (1992), but in striking contrast to the phase diagram inferred by Olsen et al. (1999). The natural occurrence of TiO2II requires formation pressures considerably higher than the graphite–diamond phase boundary.  相似文献   

4.
The Claus process has been used for the conversion of H2S and SO2 to elemental sulfur. These two sulfur compounds need special attention because they are very poisonous with negative impact on both the environment and human health. Here, highly active Fe–Ni/TiO2 catalyst has been prepared and shaped by three different binders (bentonite, polyethylene glycol and carboxymethyl cellulose) into extrudes. Comparing the mechanical strength and surface area of prepared extrudes, the optimal shaped catalyst was selected with 20% of bentonite, 2% of PEG and 2% of CMC. The optimal catalyst was characterized by X-ray powder diffraction, temperature-programmed reduction, Brunauer–Emmett–Teller specific surface area, Barrett–Joyner–Halenda, scanning electron microscopy and energy-dispersive X-ray techniques and used for sulfur recovery process. The performance of this product for sulfur recovery via Claus process was excellent with the conversion of hydrogen sulfide of 76.77% and sulfur dioxide of 97.83%. The catalyst also provides high hydrolysis activity of CS2 (83.06%). Therefore, a highly active TiO2-supported shaped catalyst with 85.62% of conversion efficiency has been prepared successfully to convert the small amounts of H2S, SO2 and CS2 to elemental sulfur.  相似文献   

5.
It is demonstrated that single titanium dioxide (TiO2) has high potential for photodegradation of pollutants. However, it is still far from becoming an effective photocatalyst system, due to issues of adsorption process, separation, as well as dissolution. Therefore, this study highlights the high adsorption capacity, simplified separation, and the promising stability of TiO2(SY) (synthesized via sol–gel method) photocatalyst, fabricated using chitosan–TiO2(SY) and supported by glass substrate (Cs–TiO2(SY)/glass substrate) photocatalysts. Chitosan (Cs), with abundant –R–NH and NH2 groups, promotes the adsorption sites of methyl orange (MO) and OH groups for major attachment to TiO2(SY). Meanwhile, the glass substrate increases stability and assists separation of the photocatalysts. Initially, nano-TiO2(SY) has been characterized using high-resolution transmission electron microscope. Cs–TiO2(SY)/glass substrate was fabricated via dip-coating. The distribution and interface between the photocatalytic components were characterized by Fourier transform infrared absorption spectroscopy, UV–Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, and energy-dispersive spectrometer. UV–Vis analysis of the multilayer photocatalyst (2, 4, 6, and 8 layers) was further carried out by the adsorption–photodegradation, with MO as model of pollutant. Seventy percent of the total removal of MO via optimized eight layers of photocatalyst was achieved within 1 h of UV irradiation. The adsorption photocatalyst achieved 50 % with no exposure to UV light for 15 min of irradiation. It is concluded that suitable photocatalytic conditions and sample parameters possessing the multilayer photocatalyst of Cs–TiO2(SY) are beneficial toward the adsorption–photodegradation process in wastewater treatment.  相似文献   

6.
Using a diamond-anvil cell and synchrotron X-ray diffraction, the compressional behavior of a synthetic qandilite Mg2.00(1)Ti1.00(1)O4 has been investigated up to about 14.9 GPa at 300 K. The pressure–volume data fitted to the third-order Birch–Murnaghan equation of state yield an isothermal bulk modulus (K T0) of 175(5) GPa, with its first derivative \(K_{T0}^{{\prime }}\) attaining 3.5(7). If \(K_{T0}^{{\prime }}\) is fixed as 4, the K T0 value is 172(1) GPa. This value is substantially larger than the value of the adiabatic bulk modulus (K S0) previously determined by an ultrasonic pulse echo method (152(7) GPa; Liebermann et al. in Geophys J Int 50:553–586, 1977), but in general agreement with the K T0 empirically estimated on the basis of crystal chemical systematics (169 GPa; Hazen and Yang in Am Miner 84:1956–1960, 1999). Compared to the K T0 values of the ulvöspinel (Fe2TiO4; ~148(4) GPa with \(K_{T0}^{{\prime }} = 4\)) and the ringwoodite solid solutions along the Mg2SiO4–Fe2SiO4 join, our finding suggests that the substitution of Mg2+ for Fe2+ on the T sites of the 4–2 spinels can have more significant effect on the K T0 than that on the M sites.  相似文献   

7.
Investigation by Raman spectroscopy of samples from different geological settings shows that the occurrence of TiO2 polymorphs other than rutile can hardly be predicted, and furthermore, the occurrence of anatase is more widespread than previously thought. Metamorphic pressure and temperature, together with whole rock chemistry, control the occurrence of anatase, whereas variation of mineral assemblage characteristics and/or fluid occurrence or composition takes influence on anatase trace element characteristics and re-equilibration of relict rutiles. Evaluation of trace element contents obtained by electron microprobe in anatase, brookite, and rutile shows that these vary significantly between the three TiO2 phases. Therefore, on the one hand, an appropriation to source rock type according to Nb and Cr contents, but as well application of thermometry on the basis of Zr contents, would lead to erroneous results if no phase specification is done beforehand. For the elements Cr, V, Fe, and Nb, variation between the polymorphs is systematic and can be used for discrimination on the basis of a linear discriminant analysis. Using phase group means and coefficients of linear discriminants obtained from a compilation of analyses from samples with well-defined phase information together with prior probabilities of groupings from a natural sample compilation, one is able to calculate phase grouping probabilities of any TiO2 analysis containing at least the critical elements Cr, V, Fe, and Nb. An application of this calculation shows that for the appropriation to the phase rutile, a correct-classification rate of 99.5% is obtained. Hence, phase specification by trace elements proves to be a valuable tool besides Raman spectroscopy.  相似文献   

8.
Undoped and Ni-doped TiO2 nanoparticles are synthesized using sol–gel technique. The physical, structural, optical and thermal properties of the samples are investigated using X-ray powder diffraction, Fourier transform infrared spectroscopy, transmittance electron microscopy, UV–visible diffuse reflectance and thermogravimetric analysis. The photocatalytic activity of the samples is investigated by the photocatalytic degradation of phthalate esters. Phthalate esters have been considered as endocrine disrupting compounds. Ni-doped TiO2 samples show better photocatalytic activity as compared to undoped TiO2 sample. The greater photocatalytic activity of doped samples as compared to undoped TiO2 can be attributed to the production of more number of electron–hole pairs in doped samples.  相似文献   

9.
WO3-modified TiO2 polyscale crystals were fabricated successfully using the hydrothermal technique. The as-prepared samples were characterized using powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy and UV–vis spectroscopy. The photocatalytic application of these synthesized samples was confirmed by photocatalytic degradation of fast green dye solution under sunlight and UV irradiation. The degradation efficiency was analyzed by measuring the parameters such as percent transmittance, chemical oxygen demand and percent decomposition of the dye solution. It was noted that the photodegradation efficiency of the samples varies with added amounts of WO3 content. The highest photodegradation efficiency was obtained using 2WT sample where the pace of decomposition was 70.5% under UV light and 81.3% under sunlight.  相似文献   

10.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

11.
In this study, the photocatalytic degradation of Congo red has been investigated in N-doped TiO2 (N-TiO2) aqueous suspensions under visible light irradiation. Visible light-active N-TiO2 was successfully prepared at three different weight contents (2.5, 5, and 7%) employing sol–gel method. It was able to harvest the visible irradiation with wavelength suitable for activation. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometer, diffused reflectance UV–Vis spectroscopy, nitrogen adsorption Brunauer–Emmert–Teller, Raman spectroscopy, photoluminescence and X-ray photoelectron spectrometer were used to characterize the doped catalyst. The samples had a relatively large specific Brunauer–Emmert–Teller surface areas of about 42 m2 g?1 with average X-ray diffraction crystalline size of 52 nm and showed visible light photocatalytic activity at about 408 nm. The impacts of several operating parameters on the Congo red photodegradation process were examined. Langmuir–Hinshelwood model exhibited pseudo-first-order degradation kinetics. N-TiO2-assisted plausible photodegradation mechanism has been suggested based on the qualitatively detected intermediate compounds.  相似文献   

12.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results. No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4.  相似文献   

13.
Oxyvanite has been identified as an accessory mineral in Cr-V-bearing quartz-diopside meta- morphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. The new mineral was named after constituents of its ideal formula (oxygen and vanadium). Quartz, Cr-V-bearing tremolite and micas, calcite, clinopyroxenes of the diopside-kosmochlor-natalyite series, Cr-bearing goldmanite, eskolaite-karelianite dravite-vanadiumdravite, V-bearing titanite, ilmenite, and rutile, berdesinskiite, schreyerite, plagioclase, scapolite, barite, zircon, and unnamed U-Ti-V-Cr phases are associated minerals. Oxyvanite occurs as anhedral grains up to 0.1–0.15 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black, with black streak and resinous luster. The microhardness (VHN) is 1064–1266 kg/mm2 (load 30 g), and the mean value is 1180 kg/mm2. The Mohs hardness is about 7.0–7.5. The calculated density is 4.66(2) g/cm3. The color of oxyvanite is pale cream in reflected light, without internal reflections. The measured reflectance in air is as follows (λ, nm-R, %): 440-17.8; 460-18; 480-18.2; 520-18.6; 520-18.6; 540-18.8; 560-18.9; 580-19; 600-19.1; 620-19.2; 640-19.3; 660-19.4; 680-19.5; 700-19.7. Oxyvanite is monoclinic, space group C2/c; the unit-cell dimensions are a = 10.03(2), b = 5.050(1), c = 7.000(1) Å, β = 111.14(1)°, V = 330.76(5)Å3, Z = 4. The strongest reflections in the X-ray powder pattern [d, Å, (I in 5-number scale)(hkl)] are 3.28 (5) (20\(\bar 2\)); 2.88 (5) (11\(\bar 2\)); 2.65, (5) (310); 2.44 (5) (112); 1.717 (5) (42\(\bar 2\)); 1.633 (5) (31\(\bar 4\)); 1.446 (4) (33\(\bar 2\)); 1.379 (5) (422). The chemical composition (electron microprobe, average of six point analyses, wt %): 14.04 TiO2, 73.13 V2O3 (53.97 V2O3calc, 21.25 VO2calc), 10.76 Cr2O3, 0.04 Fe2O3, 0.01 Al2O3, 0.02 MgO, total is 100.03. The empirical formula is (V 1.70 3+ Cr0.30)2.0(V 0.59 4+ Ti0.41)1.0O5. Oxyvanite is the end member of the oxyvanite-berdesinskiite series with homovalent isomorphic substitution of V4+ for Ti. The type material has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

14.
15.
The composite of TiO2 and zeolite H-ZSM-5 has great photocatalytic ability for organic contaminants over a very large specific surface area and highlighted adsorption capacity. To describe abiotic degradation of imidacloprid, the photoinduced degradation of the pesticide imidacloprid in aqueous solutions, in the presence of TiO2 supported on H-ZSM-5 as photocatalyst, was performed. The study focused on the comparison of the imidacloprid degradation between photolysis and photocatalysis. The experimental results showed that the degradation of imidacloprid was more rapid in the condition of photocatalytic than that of photolysis or TiO2-only. The identification of possible intermediate products during the degradation was investigated by the high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC/TOF-MS). The main photocatalytic products were identified as chloronictinic acid, 1-[(6-chloro-3-pyridinyl) methyl]-2-imidazolidinone and 1-[(6-chloro-3-pyridinyl) methyl]-N-nitroso-2-imidazolidimine.  相似文献   

16.
17.
This work reports on the evaluation of the electric field gradient (EFG) in natural chrysoberyl Al2BeO4 and sinhalite MgAlBO4 using two different procedures: (1) experimental, with single crystal Mössbauer spectroscopy (SCMBS) on the three principal sections of each sample and (2) a “fully quantitative” method with cluster molecular orbital calculations based on the density functional theory. Whereas the experimental and theoretical results for the EFG tensor are in quantitative agreement, the calculated isomer shifts and optical d–d-transitions exhibit systematic deviations from the measured values. These deviations indicate that the substitution of Al and Mg with iron should be accompanied by considerable local expansion of the coordination octahedra.  相似文献   

18.
This study describes the adsorption features of cadmium on Fe2O3 and MnO2 in alkaline saline conditions. The adsorption reached equilibrium in 6 hours under alkaline conditions. The absorption of cadmium on Fe2O3 and MnO2 was consistent with Freundlich absorption isotherms, and the corresponding adsorption capacities were 16.3 and 16.7 mg·g-1, respectively. Moreover, the adsorption quantity of cadmium on Fe2O3 and MnO2 rose with increasing pH from acidic to neutral, and reached the maximum at pH= 9. The coexisting chlorides reduced the adsorption capacity of Fe2O3 and MnO2. The influence intensities of different cations follow the order of CaCl2>>KCl>NaCl. However, the influence of sodium salts on the capacities of Fe2O3 and MnO2 to adsorb cadmium appeared more complicated: the relatively low concentrations of sodium salts could reduce the adsorption capacity; with increasing concentrations of sodium salts, e.g. NaCl and NaNO3. The adsorption capacity decreased continually. Moreover, due to the competition adsorption and precipitation effects, the adsorption capabilities of Na2CO3, NaH2PO4 and Na2HSO4 could also be reduced and cadmium concentrations in the solution were reduced as well.  相似文献   

19.
20.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号