首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The best track data of tropical cyclones (TCs) provided by Regional Specialized Meteorological Center (RSMC) Tokyo for the South China Sea (SCS) from 1977 to 2007 are employed to study the spatiotemporal variations (for a period of 12 hours) and the rapid (slow) intensification (RI/SI) of TCs with different intensity. The main results are as follows. (1) Over this period, the tropical storms (TSs) and severe tropical storms (STSs) mostly intensify or are steady while the typhoons (TYs) mostly weaken. The stronger a TC is initially, the more observation of its intensification and the less its variability will be; the more observation of its weakening is, the larger its variability will be. (2) The TC intensifies the fastest at 0000 UTC while weakening the fastest at 1200 UTC. (3) In the intensifying state, TSs, STSs, and TYs are mainly active in the northeastern, central-eastern, and central SCS respectively. The weakening cases mainly distribute over waters east off Hainan Island and Vietnam and west off the Philippines. Some cases of TSs and STSs weaken over the central SCS. (4) The RI cases form farther south in contrast to the SI cases. The RI cases are observed in regions where there are weaker vertical shear and easterly components at 200 hPa. The RI cases also have stronger mid-and lower-level warm-core structure and smaller radii of 15.4 m/s winds. The SI cases have slightly higher SST.  相似文献   

2.
岳彩军 《高原气象》2009,28(6):1348-1364
摘要: 基于WRF模式对2005年台风“海棠”登陆降水过程的成功模拟, 本文初步尝试利用修改后的非地转干Q矢量(QN矢量)PG分解, 定量揭示台风结构对台风降水和台风雨强差异形成的影响。结果表明: (1)在台风登陆过程的不同阶段, 对台风降水起主要贡献的台风结构因子是不同的。在台风登陆过程前12 h期间, 对降水贡献最为显著的为QNshdv, 其次是QNalst和QNcrst, 而QNcurv的贡献最小; 在后12 h期间, 对降水贡献最为显著的为QNcrst, 其次是QNcurv, QNshdv的贡献列第三, 而QNalst的贡献最小。(2)各台风结构因子QNalst、 QNcurv、 QNshdv及QNcrst对台风降水发生的贡献都存在明显的时、 空变化。(3)在台风登陆降水过程中, 对每个时刻暴雨雨强形成有贡献的台风结构因子是不同的。相对来讲, QNcurv对暴雨、 大暴雨及特大暴雨之间雨强差异形成的贡献最为显著, QNalst与QNcrst的贡献情况较为接近, 而QNshdv的贡献则相对最小。通过QN矢量PG分解, 可以定量揭示出登陆台风结构对台风降水的影响, 这也是总的QN矢量(即QN矢量)难以揭示的潜在物理机制。  相似文献   

3.
利用1979—2014年ERA-Interim逐月的风场、海平面气压场和位势高度场等再分析资料以及中国160站降水观测资料,采用回归分析等方法分析了盛夏(7、8月)南海(South China Sea, SCS)低空越赤道气流(Cross-Equatorial Flow,CEF)的变化及其与东亚夏季风的联系,结果表明:盛夏南海低空越赤道气流(SCEF)强度指数与南海夏季风强度指数呈显著的正相关关系,与东亚副热带夏季风强度指数呈显著的负相关关系。当盛夏SCEF偏强(弱)时,亚洲热带低压及西太平洋赤道辐合带增强(减弱),西太平洋副热带高压强度减弱(增强)、东撤(西伸),南海北部和西北太平洋地区为明显的气旋式(反气旋式)环流异常,使得南海夏季风增强(减弱)和东亚副热带夏季风减弱(增强)。此外,当盛夏SCEF偏强时,由于东亚副热带夏季风减弱,我国华南地区为东北风异常,华北地区为偏南风异常,受其影响,我国华南地区为显著的水汽辐合区,华中地区为显著的水汽辐散区,使得盛夏华南地区降水增多,华中地区降水减少;反之亦然。   相似文献   

4.
The outgoing longwave radiation(OLR)observed by NOAA satellite series has widely applied in various researchfields since the 1980s in China.In this paper,advances of the applied research of OLR are described in the following re-spects:(1)Studies of the global ITCZ;(2)Climatology of the subtropical high over northern Pacific;(3)Studies of the tropical cyclone over West Pacific;(4)Characteristics of the intraseasonal variation(ISV)of tropical convective activities;(5)Divergence wind and large scale circulation over the tropics;(6)Studies of the air-sea interaction;(7)Estimation of precipitation over the Tibetan Plateau and the Yangtze River(Changjiang River)basin during therainy season;(8)Analyses of regional climates of China;(9)Studies of prediction of the severe and disastrous weather and climate;(10)Atlas of OLR.The distinctive features of these advances are reviewed and the focal points of the OLR applied research in futureare also suggested.  相似文献   

5.
夏季亚洲-太平洋涛动与中国近海热带气旋活动的关系   总被引:3,自引:2,他引:1  
邹燕  赵平 《气象学报》2009,67(5):708-715
采用联合台风警报中心的台风最伟路径资料和NCEP/NCAR再分析资料,分析了夏季亚洲-太平洋涛动(Asian-Pacif-ic Oscillation,简称APO)与东亚近海-西北太平洋大气环流的关系,并进一步探讨了APO与中国近海热带气旋(tropical cy-clone,简称TC)活动的关系.研究表明:(1)夏季APO强弱与同期西北太平洋及中国东部近海TC活动存在密切关系,即在APO强(弱)年,西北太平洋TC活动偏西(东)和偏北(南),中国东部近海TC明显增多(减少);(2)当APO偏强(弱)时,中国东部近海大气环流有(不)利于TC的维持和发展,表现为低层存在异常气旋性(反气旋性)环流,对流层高低层纬向风垂直切变减小(增大),且对流加强(减弱);(3)APO强弱也影响着TC引导气流的方向:在APO强(弱)年,西北太平洋副热带高压(以下简称副高)偏北和偏东(偏南和偏西),副高南侧偏东气流减弱(加强),有利于TC的向西北行或在偏北(南)纬度西行,进入中国东部近海的TC增多(减少);(4)APO强弱也影响着南海-热带西太平洋TC源地上空的大气环流,在APO强(弱)年,南海-热带西太平洋季风槽偏北、偏西(偏南、偏东),热带西太平洋TC活动偏北和偏西(偏南和偏东),有利于进入中国东部近海TC的增多(减少).  相似文献   

6.
This study uses rain gauge observations to assess the performance of different radar estimators R(ZH), R(KDP)and R(A) in estimating precipitation based on the observations of an S-band polarimetric radar over southern China during a typical convective storm and an extremely severe typhoon, i. e., Typhoon Manghkut. These radar estimators were derived from observations of a local autonomous particle size and velocity(Parsivel) unit(APU) disdrometer. A key parameter, alpha(α), which is the ratio of specific attenuation A to specific differential phase K_(DP) with three fixed values(α=0.015 dB deg~(-1), α=0.0185 dB deg~(-1) and α=0.03 dB deg~(-1)) was examined to test the sensitivity of the R(A) rain retrievals. The results show that:(1) All radar estimators can capture the spatio-temporal patterns of two precipitation events, R(A) with α =0.0185 dB deg~(-1) is well correlated with gauge measurement via higher Pearson's correlation coefficient(CC) of 0.87, lower relative bias(RB) of 16%, and lower root mean square error(RMSE) of 17.09 mm in the convective storm while it underestimates the typhoon event with RB of 35%;(2) R(A) with α=0.03 dB deg~(-1) shows the best statistical scores with the highest CC(0.92), lowest RB(7%) and RMSE(25.74 mm) corresponding to Typhoon Manghkut;(3) R(A) estimates are more efficient in mitigating the impact of partial beam blockage. The results indicate that α is remarkably influenced by the variation of drop size distribution. Thus, more work is needed to establish an automated and optimized α for the R(A) relation during different rainfall events over different regions.  相似文献   

7.
The impact of strong (weak) intraseasonal oscillation (ISO) over South China Sea (SCS) and South Asia (SA) in summer on the SCS and SA summer monsoon and the summer rainfall in Eastern China are studied by using the NCEP-NCAR analysis data and the rainfall data of 160 stations in China from 1961 to 2010. It is found that the impacts are significantly different in different months of summer. The study shows that in June and July cyclonic (anticyclonic) atmospheric circulation over SCS and SA corresponds to strong (weak) ISO over SCS. In August, however, strong (weak) ISO over SCS still corresponds to cyclonic (anticyclonic) atmospheric circulation over SA. In June and August cyclonic (anticyclonic) atmospheric circulation over South Asia corresponds to strong (weak) ISO over SA while a strong (weak) ISO corresponds to anticyclonic (cyclonic) atmospheric circulation over SA in July. Besides, in June the strong (weak) ISO over SA corresponds to cyclonic (anticyclonic) atmospheric circulation over SCS, while in July and August the atmospheric circulation is in the same phase regardless of whether the ISO over SA is strong or weak. The impacts of the strong(weak)ISO over SCS on the rainfall of eastern China are similar in June and July, which favors less (more) rainfall in Yangtze-Huaihe Rivers basin but sufficient (deficient) rainfall in the south of Yangtze River. However, the impacts are not so apparent in August. In South Asia, the strong (weak) ISO in July results in less (more) rainfall in the south of Yangtze River but sufficient (deficient) rainfall in Yangtze-Huaihe Rivers basin. The influence on the rainfall in eastern China in June and August is not as significant as in July.  相似文献   

8.
This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO corresponding to less (more) EHEs in northern China. The summer circulation anomalies associated with the SNAO give further confirmation of the above relationship. In a positive-phase (negative-phase) SNAO year, there is an anomalous cyclone (anticyclone) over central East Asia, which can increase (decrease) the total cloud cover over this region. Such changes of the total cloud cover can then decrease (increase) the solar radiation reaching the surface, which is consequently unfavorable (favorable) to the formation of EHEs over northern China.  相似文献   

9.
基于1980—2020年秋季江西省83个气象观测站逐月降水数据,利用EOF方法分析了该地区秋季降水的时空分布特征。结果表明,江西省秋季降水场主要有4种类型,分别为全区型、北湿(干)南干(湿)型、西湿(干)东干(湿)型、中心湿(干)南北干(湿)型,累计贡献率为86.7%。1980—2020年,全区型和中心湿(干)南北干(湿)型降水呈增加趋势,而北湿(干)南干(湿)型和西湿(干)东干(湿)型降水呈下降趋势。其中全区型降水分布的年份占比75.6%,主要受大尺度大气环流的影响。北湿(干)南干(湿)型降水分布的年份占比17.1%,这是由于赣北地区受地形抬升作用,降水较多,而中南部在背风坡,降水较少,同时秋季赣北处于副热带高压边缘,且受到台风外围的影响,易发生降水,使得南北降水呈反相位变化。  相似文献   

10.
利用欧洲中期天气预报中心ECMWF(European Center for Medium-range Weather Forecast)逐日再分析资料(ERA40),通过经验正交函数(empirical orthogonal function,EOF)分解发现,冬季北太平洋东部风暴轴有着显著的年际变化特征:第一变化模态为在气候平均位置南北相反的偶极子变化型,第二变化模态为在气候平均位置处一致增强或减弱的变化型,第三变化模态为三极子的变化型。进一步的回归分析发现:当东部风暴轴南压(北抬)时,同期冬季是一种厄尔尼诺(拉尼娜)年海温异常空间分布型,中纬度北太平洋海区以及赤道中、东海区,冬季冷(暖)异常的洋面上是异常低压(高压),对流层中层是太平洋—北美型(Pacific-North American Pattern,PNA)遥相关的正(负)位相;当东部风暴轴增强(减弱)时,同期冬季黑潮区海温偏暖(偏冷),对流层中层表现为西太平洋型(West Pacific Pattern,WP)遥相关的正(负)位相;当东部风暴轴呈现西北—东南+-+(-+-)相间三极子的分布时,同期冬季巴布亚新几内亚附近海温异常偏暖(冷),夏威夷附近海温异常偏冷(暖),冬季冷(暖)异常的洋面上是异常低(高)压,对流层中层表现出类似PNA正(负)位相。EOF分解各模态所对应时间系数与阿留申低压(Aleutian Low,AL)指数、PNA指数、Nino3指数、WP指数、黑潮海温(Kuroshio Current,KC)指数之间存在显著的相关,这些证明了东部风暴轴与同期大气环流及SST异常之间的联系。  相似文献   

11.
1 INTRODUCTION It is doubtless that TCs making landfalls on Guangdong are one of the important aspects of the research on and prediction of short-term climate changes for the province. With regard to the climate patterns of TCs motion and factors governin…  相似文献   

12.
利用1983-2012年NCEP/NCAR、NCEP/DOE、ECMWF再分析月平均资料,及中国160站月平均气温和降水量资料,利用统计学方法从大气环流、降水及温度等方面对高原夏季风与南海夏季风的关系进行了探讨。结果表明:高原夏季风与南海夏季风呈负相关关系,且大气环流及对流活动存在显著性差异。高原夏季风偏强(弱)同时南海夏季风偏弱(强)时,同期中国大部分地区的500hPa高度场偏低(高),南海地区500hPa高度场偏高(低);欧亚大陆低纬地区大部为偏东(西)风,南海地区处于反气旋(气旋)环流中。青藏高原主体地区上升运动较弱(强),南海中心区域上升运动均较弱(强),长江中下游地区降水增加(减少),华南降水减少(增加)。中国大部分地区气温较低(高),华南地区气温较高(低)。  相似文献   

13.
By using 1958-2001 NOAA extended reconstructed sea surface temperature(SST) data, ERA40 reanalysis soil moisture data and precipitation data of 444 stations in China(east of 100°E), the possible relationships among South China Sea(SCS) SST anomaly(SSTA), soil moisture anomalies(SMA) and summer precipitation in eastern China as well as their possible physical processes are investigated. Results show that the SSTA of SCS bears an evidently negative correlation with spring soil moisture in the east part of Southwest China. More(less) precipitation happens in the Yangtze River basin and less(more) in the Southeast China in summer when the SSTA of SCS is higher(lower) than normal and the soil in the east part of Southwest China is dry(wet) in spring. Further analysis shows that when the SSTA of SCS is high(low), the southwesterly wind at low level is weak(strong), decreasing(increasing) the water vapor transport in South China, resulting in reduced(increased) spring precipitation in the east part of Southwest China and more(less) soil moisture in spring. Through the evaporation feedback mechanism, the dry(wet) soil makes the surface temperature higher(lower) in summer, causing the westward extension(eastward retreat) of the West Pacific Subtropical High, eventually leading to the summer precipitation anomalies.  相似文献   

14.
LOCALIZED HADLEY CIRCULATION AND ITS LINKAGE TO PACIFIC SSTA   总被引:1,自引:0,他引:1  
The 1979-2001 ERA-40 monthly mean meridional winds are used to calculate the mass streamfunctions in the monsoon region (60-140° E) and Nio zone (160° E-120° W),with which the climate characteristics and intensity variation of the localized Hadley circulation (LHC) are analyzed over the two regions and the linkage of this LHC to Pacific SST is explored.Evidence suggests as follows.1) The climatological LHC is stronger in the monsoon than in the Nio zone,with its position in the former northward of the lat...  相似文献   

15.
利用1951—2016年逐月中国160站降水资料、NCEP/NCAR全球大气再分析资料和NOAA_ERSST_V4海表温度资料,分析了南亚高压与西太平洋副热带高压(西太平洋副高)经、纬向位置的关系及其位置配置对中国东部夏季降水的影响,结果表明:(1)南亚高压与西太平洋副高在纬向上的东西进退存在明显的反相关系,在经向上主要存在一致变化的特征,并依此定义了纬向、经向位置指数。纬向位置指数大(小)表示南亚高压与西太平洋副高纬向上距离远(近),经向位置指数大(小)表示两高压经向位置均趋于偏北(南);(2)纬向位置指数与我国华北、华南沿海地区降水呈显著正相关,而与长江中下游、东北北部地区降水呈显著负相关;经向位置指数与我国华北、东北南部地区降水呈显著正相关,而与我国江南、华南地区降水呈显著负相关;(3)南亚高压与西太平洋副高的经向、纬向位置指数与关键海区的前期春季、同期夏季海表温度均有显著的相关,热带太平洋-印度洋、北印度洋、中东太平洋前期春季、同期夏季海表温度与南亚高压东脊点呈显著正相关,与南亚高压脊线及西太平洋副高西脊点均呈显著负相关,而北太平洋海表温度主要与西太平洋副高脊线呈显著正相关。   相似文献   

16.
Response of the Kuroshio Current to Eddies in the Luzon Strait   总被引:1,自引:0,他引:1       下载免费PDF全文
The impact of eddies on the Kuroshio Current in the Luzon Strait (LS) area is investigated by using the sea surface height anomaly (SSHA) satellite observation data and the sea surface height (SSH) assimilation data. The influence of the eddies on the mean current depends upon the type of eddies and their relative position. The mean current is enhanced (weakened) as the cyclonic (anticyclonic) eddy becomes slightly far from it, whereas it is weakened (enhanced) as the cyclonic (anticyclonic) eddy moves near or within the position of the mean current; this is explained as the eddy-induced meridional velocity and geostrophic flow relationship. The anticyclonic (cyclonic) eddy can increase (decrease) the mean meridional flow due to superimposition of the eddy-induced meridional flow when the eddy is within the region of the mean current. However, when the eddy is slightly far from the mean current region, the anticyclonic (cyclonic) eddy tends to decrease (increase) the zonal gradient of the SSH, which thus results in weakening (strengthening) of the mean current in the LS region.  相似文献   

17.
A real case study for the transformation of Tropical Storm (TS) Haima (2004) into an extratropical cyclone (EC) is carried out numerically since,after landfall,Haima (2004) (as an EC) brought severe weather to a large area (from the south to the north) in China during 13-16 September 2004.With the linear diagnostic model (derived in a previous study) for the tangentially-averaged radial-vertical circulation within vortices moving on the spherical Earth,Haima’s (2004) life cycle is reconstructed noticeably well.Therefore,the major contributor could be identified confidently for Haima’s (2004) extratropical transition based on the diagnostic model outputs.The quantitative comparison shows that up to a 90% contribution to the innerregion updraft and a 55% contribution to the upper-layer outflow come from latent heating during Haima’s (2004) TS stage.Up to a 90% contribution to the inner-region updraft and nearly a 100% contribution to the upper-layer outflow come from the upper-layer eddy angular momentum advection (EAMA) during Haima’s (2004) EC stage.Representing the asymmetric structure of the storm,the predominantly positive contribution of the upper-layer EAMA to Haima’s (2004) transformation is closely associated with the Sshaped westerlies in the upper layer with two jets.One jet in the cyclonic-curvature area carries cyclonic angular momentum into the storm,and the other jet in the anticyclonic-curvature area carries anticyclonic angular momentum out of the storm.Consequently,the newly-increased cyclonic tangential wind is deflected by the Coriolis force to the right to form the upper-layer outflow accompanied by the central-area rising motion,leading to Haima’s (2004) extratropical transition after its landfall.  相似文献   

18.
The principal results of triggered-lightning experiments conducted at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida, from 1993 through 2002 are reviewed. These results include (a) characterization of the close lightning electromagnetic environment, (b) first lightning return-stroke speed profiles within 400 m of ground, (c) new insights into the mechanism of the dart-stepped (and by inference stepped) leader, (d) identification of the M-component mode of charge transfer to ground, (e) first optical image of upward connecting leader in triggered-lightning strokes, (f) electric fields in the immediate vicinity of the lightning channel, (g) inferences on the interaction of lightning with ground and with grounding electrodes, (h) discovery of X-rays produced by triggered-lightning strokes, (i) new insights into the mechanism of cutoff and reestablishment of current in rocket-triggered lightning. Selected results are discussed.  相似文献   

19.
El Ni(n)o or La Ni(n)a manifest in December over the Pacific and will serve as an index for the forecasting of subsequent Indian summer monsoon,which occurs from June to mid-September.In the present article,an attempt is made to study the variation of latent heat flux (LHF) over the north Indian Ocean during strong El Ni(n)o and strong La Ni(n)a and relate it with Indian monsoon rainfall.During strong El Ni(n)o the LHF intensity is higher and associated with higher wind speed and lower cloud amount.During E1 Ni(n)o all India rainfall is having an inverse relation with LHF.Seasonal rainfall is higher in YY+1 (subsequent year) than YY (year of occurrence).However there is a lag in rainfall during El Ni(n)o YY+1 from June to July when compared with the monthly rainfall.  相似文献   

20.
Changes in Chinese temperature extremes are presented based on a six-hourly surface air temperature dataset for the period 1961--2005. These temperature series are manually observed at 0200, 0800, 1400, and 2000 Beijing Time (LST), and percentile based extreme indices of these time series are chosen for analysis. Although there is a difference in time among the different time zones across China, as more than 80% of the stations are located in two adjacent time zones, these indices for all the stations are called warm (cold) nights (0200 LST), warm (cold) mornings (0800 LST), warm (cold) days (1400 LST), and warm (cold) evenings (2000 LST), respectively for convenience. The frequency of the annual warm extremes has generally increased, while the frequency of the annual cold extremes has decreased, and significant changes are mainly observed in northern China, the Tibetan Plateau, and the southernmost part of China. Based on the national average, annual warm (cold) nights increase (decrease) at a rate of 5.66 (-5.92) d (10 yr)-1, annual warm (cold) days increase (decrease) at a rate of 3.97 (-2.98) d (10 yr)-1, and the trends for the annual warm (cold) mornings and evenings are 4.35 (-4.96) and 5.95 (-4.35) d (10 yr)-1, respectively. For China as a whole, the increasing rates for the occurrence of seasonal warm extremes are larger in the nighttime (0200, 2000 LST) than these in the daytime (0800, 1400 LST), the maximal increase occurs at 2000 LST except in the summer and the minimal increase occurs at 1400 LST except in autumn; the maximal decrease in the occurrence of seasonal cold extremes occurs at 0200 LST and the minimal decrease occurs at 1400 LST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号