首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 418 毫秒
1.
汪玲瑶  谌芸  肖天贵  李晟祺  葛蕾 《气象》2018,44(6):771-780
本文首先给出江南地区暖区暴雨的定义,并按天气形势将其分为暖切变型、冷锋锋前型、副热带高压(以下简称副高)型和强西南急流型四类。然后利用2010—2016年5—9月常规和自动站逐时降水等非常规观测资料统计暖区暴雨的时空分布特征和降水性质等,并对暖区暴雨的形成原因进行初步分析。最后利用NCEP FNL全球分析资料,基于中尺度分析技术给出四类暖区暴雨的系统配置:(1)四类暖区暴雨均为分散性局地降水,降水多发生于山区、平原和湖泊交界处等不均匀下垫面附近。其中,暖切变型降水范围广、强度最大、极端性最明显且主要位于江南中西部;冷锋锋前型降水集中、强度较大且具有一定极端性,主要位于江南中部;副高型降水强度较弱,主要位于江南中东部;强西南急流主要位于江南西部。(2)暖切变型和强西南急流型以夜间降水为主,副高型降水集中在午后,冷锋锋前型降水日变化不明显。(3)暖区暴雨由稳定性和对流性降水共同组成且降水量越大,降水对流性越明显。(4)在低层高湿、不稳定能量积聚等有利背景下,暖切变型、冷锋型和副高型暖区降水多由边界层(地面)中尺度辐合线配合高低空急流耦合产生,强西南急流型一般形成于低空急流上的中尺度风速脉动及地面辐合线附近,且低空急流越强,暴雨强度越大。(5)暖切变型和冷锋型暖区暴雨的落区分别位于低层850hPa暖切变以南和地面锋前的显著湿区内,副高型和强西南急流型的暴雨落区分别位于副高内和强低空急流出口区左前侧的水汽充沛且大气层结不稳定区内。四类暖区暴雨常表现为长生命史的移动型中尺度雨团途经山区或河流湖泊等不均匀下垫面时,强度增大、移速减慢,形成暖区局地强降水。  相似文献   

2.
利用2008-2018年常规地面资料、探空站资料、逐小时自动站降水资料,NCEP/NCAR再分析资料及FY2E卫星TBB资料对江南暖区暴雨进行了统计分析和可能影响因子研究.2008-2018年共发生65次江南暖区暴雨,分为切变型、副高型、副高和切变相互作用型和西南急流型4类,可进一步细分为暖切变型、冷切变型、暖切变与副...  相似文献   

3.
广西\     

基于2012-2016年西南低涡年鉴资料、欧洲中心ERA-Interim再分析资料、湖南省站点降水数据及热带测雨卫星TRMM格点降水产品,对西南涡影响下的湖南省暴雨天气过程进行了普查与分析,并进一步利用多变量EOF法和k均值聚类法对西南涡暴雨天气进行了客观分类。结果表明:(1)西南涡暴雨占湖南总暴雨日数的三分之一,大多由偏东路径的盆地涡和九龙涡造成。(2)湖南省西南涡暴雨天气主要分为暖区类、回流类和锋面类,其中暖区类暴雨强度最强,回流类和锋面类强度相当。(3)西南涡暖区暴雨发生在西南涡槽前深厚的暖湿气流中,落区集中在湘中以北。回流暴雨主要形成于低空高压后部东风回流和西南涡槽前西南气流耦合区,落区集中在湘东南,该类是秋季西南涡暴雨的主要天气形势。锋面暴雨因锋区与西南涡槽前耦合叠加,落区位于锋面附近并沿切变线分布。

  相似文献   

4.
两次不同类型暖区暴雨的对比分析   总被引:1,自引:0,他引:1  
2014年5月8-12日,华南发生了连续暴雨天气过程,为了探究回流暖区暴雨和锋前暖区暴雨的成因,加深这两类不同类型暴雨的认识,利用NCEP/,NCAR的1°×1°再分析资料、多普勒天气雷达、风廓线仪、自动站资料等,分析了回流暴雨与锋前暖区暴雨的特征及主要物理差异。得出:(1)8日暴雨发生在变性高压脊后部,未受冷空气影响,属于回流型暖区暴雨过程,10-11日暴雨发生在锋面低槽中,属于锋前型暖区暴雨。(2)两种类型暴雨不仅降水的分布、中尺度云团活动、雷达特征等存在明显的差异,而且在天气形势、水汽输送、动力机制、中尺度环境条件以及与暴雨的触发机制存在着不同点,这些差异可能是造成两类暖区暴雨降水落区及量级差异的主要原因。  相似文献   

5.
《湖北气象》2021,40(1)
基于2012—2016年西南低涡年鉴资料、欧洲中心ERA-Interim再分析资料、湖南省站点降水数据及热带测雨卫星TRMM格点降水产品,对西南涡影响下的湖南省暴雨天气过程进行了普查与分析,并进一步利用多变量EOF法和k均值聚类法对西南涡暴雨天气进行了客观分类。结果表明:(1)西南涡暴雨占湖南总暴雨日数的三分之一,大多由偏东路径的盆地涡和九龙涡造成。(2)湖南省西南涡暴雨天气主要分为暖区类、回流类和锋面类,其中暖区类暴雨强度最强,回流类和锋面类强度相当。(3)西南涡暖区暴雨发生在西南涡槽前深厚的暖湿气流中,落区集中在湘中以北。回流暴雨主要形成于低空高压后部东风回流和西南涡槽前西南气流耦合区,落区集中在湘东南,该类是秋季西南涡暴雨的主要天气形势。锋面暴雨因锋区与西南涡槽前耦合叠加,落区位于锋面附近并沿切变线分布。  相似文献   

6.
四川盆地暖区暴雨的雷达回波特征及分类识别   总被引:1,自引:0,他引:1       下载免费PDF全文
暖区暴雨强度大且降水集中,可造成严重气象灾害。利用四川盆地实况降水和7部天气雷达资料,分析了2012—2017年28次暖区暴雨过程的降水特征,按超过20 mm·h-1降水站数的突增,将暖区暴雨的雷暴群分为初生阶段和成熟阶段,根据不同降水类型成熟前后的雷达回波特征,将雷暴群分为3种类型,3类回波特征差异明显,雷暴的长时间生消、合并以及传播作用使暖区暴雨降水强度大、范围广。在28次暖区暴雨过程中,四川盆地西北部出现次数最多,持续时间最长,回波基本呈现东北—西南向,与四川盆地西部龙门山脉走向基本一致,地形(产生偏东风)抬升在暖区暴雨的发生发展中起关键作用。对3类雷暴群质心高度、顶高、最大回波强度等要素的统计显示,不同类型雷暴群在初生阶段和成熟阶段的概率密度曲线存在双峰和单峰等结构特征。利用雷暴群的多个参数构建暖区暴雨分类识别的特征向量,并采用随机森林机器学习方法进行识别,取得较好效果。  相似文献   

7.
华南暖区暴雨过程集合动力因子的诊断分析   总被引:1,自引:1,他引:0  
苏冉  廖菲  齐彦斌 《气象》2019,45(11):1517-1526
选取2015—2017年4—6月发生在广东地区的20个暖区暴雨个例,利用GFS0.5°×0.5°预报场资料,分析了集合动力因子在华南暖区暴雨中的分布特征。研究结果表明:(1)在广东省的四类主要暖区暴雨中,锋前低槽暴雨中各集合动力因子和累积降水的相关性最高,其次是西南急流暴雨,而回流暴雨中的相关性最差。锋前低槽暴雨与回流暴雨有共同的相关性较好的集合动力因子,高空槽和副热带急流暴雨与西南急流暴雨也有共同的相关性较好的集合动力因子。(2)选取各类暖区暴雨中对降水表征最好的集合动力因子分别构建了3个量级的权重指数(量级分别为10~(-3)、10~(-1)和10~2),发现各量级的权重指数随着降水量级的增大而增大,说明权重指数对分析判断不同量级的降水具有很好的指示作用。(3)采用各量级权重指数的中位数作为判断降水等级的阈值,并利用3个量级的权重指数可以综合判断降水的强度等级,这为降水的量级预报提供了一个客观化指标。这些结果进一步提高了集合动力因子在华南暖区暴雨预报中的实际应用能力。  相似文献   

8.
华南暖区暴雨事件的筛选与分类研究   总被引:2,自引:0,他引:2  
利用逐小时降水资料,采用客观方法对1982~2015年华南地区暖区暴雨进行了筛选和分类研究。主要结果如下:华南区域暖区暴雨事件共计177例,暖区暴雨占筛选的暴雨事件的16.86%,表明暖区暴雨是华南非常重要的降水过程。暖区暴雨主要出现在4~7月,6月份最多,平均持续11.58 h。暖区暴雨事件发生位置主要集中在广东、广西的沿海地区和粤北山区,有四个降雨中心。产生华南暖区暴雨的天气形势主要有四类,切变线型、低涡型、南风型和回流型,不同类型的暖区暴雨对华南地区的内陆和沿海的作用不同,且南风影响下的暖区暴雨发生频率较高,影响较大,是一类较为重要的暖区暴雨。  相似文献   

9.
《高原气象》2021,40(4):815-828
首先对2008-2019年4-9月湖南弱天气尺度背景下暖区暴雨依据500 hPa环流形势分为强西南急流型和副高型,然后对2018年4月30日(简称"4·30"过程)和2016年7月17日(简称"7·17"过程)两次不同类型暖区暴雨过程进行对比分析。结果表明:(1)两类暖区暴雨具有明显季节差异,强西南急流型和副高型分别发生在春季和夏季。强西南急流型一天任何时刻均会出现,夜间降水频次增多。副高型的日变化明显,降水峰值出现在上午。强西南急流型降水范围广,多出现在湘南地区,西南急流北推到长江中下游地区时,湘北也会出现暴雨。副高型降水分散,在湘西北、湘北及湘东南地区均出现强降水,局地性强,对流性明显。(2)"4·30"过程暴雨区处于上下一致西南风中,在切变线南侧辐合上升、西南急流和地面辐合线共同影响下湘东北出现暴雨,属于强西南急流型暖区暴雨;而"7·17"过程,副高脊线控制湖南,受中低层弱切变和地面中尺度气旋影响,湘西北出现暴雨,属于副高型暖区暴雨。(3)"4·30"过程暴雨区上空垂直螺旋度均为负值,700 hPa存在负值中心,意味着700 hPa切变线造成暴雨区强辐合上升,导致强降水发生;"7·17"过程,垂直螺旋度呈"上正下负"结构,900 hPa高度强气旋性旋转辐合最强,表征近地层中小尺度系统影响造成暴雨。"4·30"过程水汽输送和辐合比"7·17"过程更强。"7·17"过程比"4·30"过程低层热力不稳定能量更大且热力不稳定层结更强。β中尺度辐合线和γ小尺度气旋分别为"4·30"过程和"7·17"过程的触发机制。  相似文献   

10.
利用2007—2016年春季浙江及周边地区气象站观测资料与ECMWF再分析资料,分析总结浙江省春季暖区降水天气过程的环流特征及中尺度概念模型。结果表明:浙江春季暖区天气具有云量多、雨量小、气温高、日温差小的特点,暖区降水的环流形势可分为西南气流型、暖切北抬型、冷切靠近型、东南气流型4类;冷切靠近型降雨最强,其次为暖切北抬型,雨量分布均表现为西南部大、东北部小,而东南气流型降雨最小。中尺度分析发现,浙江春季暖区降雨出现在沿海近地层东南气流与低层西南气流交汇的辐合上升区、850 hPa等θse线密集区,雨带走向与等θse线平行;近地层残留的冷空气和海陆温差造成的斜压不稳定可导致降水明显增强。  相似文献   

11.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

12.
华南暖区暴雨预报失误及可预报性探讨   总被引:1,自引:0,他引:1  
覃武  刘国忠  赖珍权  覃月凤  梁依玲 《气象》2020,46(8):1039-1052
由于暖区暴雨产生的环境条件复杂和触发机制难以捕捉,数值模式对其预报能力弱,给预报带来困难,经常导致预报失误,是短期预报中的难点。2016年4月19—20日广西出现了一场暖区暴雨天气过程,预报员及数值模式预报出现较大失误。利用业务预报中的数值预报产品、地面中尺度自动气象站观测、常规地面及高空观测、新一代天气雷达及FY-2G卫星探测等资料对此次暖区暴雨预报失误进行剖析。结果表明:中低空急流增强及西南暖低压发展,为越南北部至广西中南部提供了高温、高湿、高能的环境条件,地形性辐合及涡旋触发了对流的发生,中尺度辐合线有效组织了对流的发展,雷达回波具有质心低、降雨效率高等暖云降雨的特征。预报员和数值模式短期时效内对暖区暴雨缺乏预报能力,未能准确把握可触发对流的机制,是预报失败的原因。预报员通过分析上游地区对流云团、地面中尺度辐合线演变及地形作用等触发条件,可以在短时临近时效内对暖区暴雨部分做出定性预报,发布预警信息,弥补短期预报的不足。因此,加强对暖区暴雨形成机理的认识,在预报中做好精细分析,是提高暖区暴雨预报能力的有效途径之一。  相似文献   

13.
利用NCEP/NCAR 1°×1°再分析资料、昭通多普勒雷达资料 、自动站实时观测资料等,分析云南省昭通市夏季的一次伴有大范围短时强降水的暖区暴雨过程。结果表明:这是一次发生在有利的天气尺度背景下,由持续存在的地面辐合线触发抬升产生的暖区对流性降雨过程;这次过程的水汽来源于孟加拉湾、南海和西太平洋,同时700hPa水汽输送与降水的落区和量级密切相关,水汽输送越好,降雨量级越大;长期维持的上干冷下暖湿的不稳定层结,配合有利的水汽条件和适当的物理量场导致了此次连续性强对流天气的发生;垂直上升速度的大值区和降雨量级的大值区并不是一一对应关系,可以用来表征降雨的状态,但是不能用来定量表征降雨量级;持续存在的“逆风区”有利于连续性的短时强降水的发生;昭通市低层偏东风辐合导致的暖区对流性降水过程中,地形的辐合抬升起到了重要的作用。  相似文献   

14.
河南省对流性暴雨云系特征与概念模型   总被引:5,自引:1,他引:5       下载免费PDF全文
利用2005—2010年FY-2C/E和MODIS卫星资料、A0报文、自动气象站降水资料及常规观测资料,修订了河南省对流性暴雨中尺度对流系统标准,统计分析了暴雨中尺度对流系统的活动规律和降水特征,初步建立了河南省典型对流性暴雨概念模型。河南省对流性暴雨中尺度对流系统主要包括新生对流云团、β中尺度对流系统、α中尺度对流系统及带状中尺度对流系统。对流性暴雨易产生于中尺度对流系统的发生、发展期,多发于中尺度对流系统云顶亮温低中心附近及后侧梯度大值区, 云系上云光学厚度高值区为中尺度对流系统发展潜势区。低槽 (涡) 切变型和低槽型过程中干冷气团对中尺度对流系统的发生、发展起触发作用;高压后部型与午后边界层辐射增温关系密切,能量锋、边界层辐合线是中尺度对流系统的触发系统;切变型过程中干线的作用较重要。河南省对流性暴雨中尺度对流系统多发展于山区附近,移动路径有东移、东北移和东南移型,高层云导风可为中尺度对流系统的移动发展提供预报信息。  相似文献   

15.
基于中国气象局龙门云物理野外科学试验基地2DVD(Two-Dimensional Video Disdrometer)雨滴谱观测资料, 分析广东地区2017年5月4日(槽前型飑线)和2017年8月22日(东风型飑线)两次不同飑线系统不同降水类型的雨滴谱特征。根据雨强和雷达反射率随时间变化将降水分成对流降水和层云降水, 同时以20 mm/h为阈值将对流降水划分为对流前沿、对流中心和对流后沿。结果表明, 两次飑线系统在不同降水时期的微物理特征参数变化有所差异。槽前型飑线过程中, 对流降水的粒子分布较为分散, 中等粒径的粒子比重较高, 且对流区前半部分粒子尺寸大于“大陆性”对流特征, 后半部分粒子尺寸小于“海洋性”对流特征; 层云降水的粒子分布较为集中, 小粒径粒子居多。而东风型飑线整个降水时期基本上是由高浓度中小粒径粒子组成, 降水粒子粒径分布较为集中, 对流降水粒子介于“海洋性”和“大陆性”对流区之间。   相似文献   

16.
陆汉城 《暴雨灾害》2019,24(5):440-449

经过新中国成立以来多次中尺度天气试验研究,江淮以南地区暴雨和强降水的中尺度天气动力学研究取得长足进展。其进展主要体现在两个方面:一是用较高分辨率的观测资料(包括地面和高空探测的加密观测以及卫星和雷达的观测)对形成暴雨和强降水的中尺度天气系统的结构特征和生命史过程建立了天气学概念模型,特别是对暴雨和强降水有重要影响的α中尺度和β中尺度对流系统,建立了观测个例的中尺度物理模型;二是探索了暴雨和强降水的动力学和热力学的物理机制,为精细化数值模式的设计提供了理论支撑,为灾害性天气预测预警提供了技术支持。本文在以往暴雨和强降水研究的基础上,着重对暴雨和强降水的中尺度天气科学试验、江淮以南地区暴雨和强降水发生主要区域的中尺度天气动力学研究进行了概述。

  相似文献   

17.
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP再分析资料,对桂林2019年6月6-12日接连3次强降水天气过程的环流背景、影响系统与形成原因进行了对比分析。结果表明:(1)3次过程按影响系统分属暖区暴雨、低涡暴雨和锋面暴雨过程,均发生在高空急流右侧辐散、低空急流左侧辐合叠加区。(2)3次过程均受500 hPa短波槽和地面中尺度辐合线影响,但第1次过程中西南急流及地形等、第2次过程中低涡切变线、第3次过程中冷锋也起到重要作用。(3)3次过程的触发系统不同,第1次暖区暴雨过程迎风坡地形对其起触发作用,西南急流使得后向传播的对流云带维持;第2次低涡暴雨过程的触发系统为低层位于贵州一带的西南涡,西部冷空气侵入与西南急流加强是低涡对流云团维持较长时间的原因;第3次锋面暴雨的触发系统为冷锋,锋面配合锋前暖湿气流使对流云带加强。(4)第1次过程暖区暴雨MCS模态主要为线状后向扩建类,极端强降水出现在线对流中后端;第2次过程低涡暴雨MCS模态为涡旋类,极端强降水出现在涡旋中心附近;第3次过程锋面暴雨MCS模态由前期后部层云区线状对流转为层状云包裹对流系统,强降水发生在线对流弯曲或中心强回波处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号