首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
高原涡与西南涡相互作用暴雨天气过程的诊断分析   总被引:6,自引:1,他引:6  
利用动力诊断方法,对2008年7月20~22日高原低涡与低层西南低涡相互作用引发西南低涡强烈发展和四川大面积特大暴雨天气发生机理进行了诊断分析。分析表明:高原涡与西南涡涡心之间的纬向距离在5个纬度的时候,两者上升气流都在500 hPa以下,当两者继续东移,在经向上耦合的时候,二者同时得到发展,西南涡中心的上升气流达到300 hPa,而高原涡中心的上升气流突破200 hPa;西南涡在低层出现初期,在一定程度上制约了高原涡的发展,随着两者在经向方向发生耦合,上下涡度平流不同造成垂直差动,将激发500 hPa以下的上升运动与气旋性涡度加强,使得500 hPa与700 hPa涡心正涡度值的增大近1倍。并且涡前的正涡度变率使得高原涡发展并东移,待垂直耦合后,高原涡与盆地涡相互强迫作用促使气流上升运动加强也是导致高原低涡与西南低涡共同发展的一种机制。  相似文献   

2.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

3.
使用常规观测资料、ERA-Interim再分析资料和卫星资料,以2014年7 月8-10 日西南涡和高原涡相互作用引发MCC 产生大暴雨的天气过程为例,分析了两涡作用导致大暴雨的形成机制.结果表明:相互作用前期,两涡涡心间距较远,在500 hPa 高度上两者同处于青海南部的气旋及其向南延伸的低槽前.约24 h 后,高原...  相似文献   

4.
两次高原涡与西南涡作用下的暴雨过程对比分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用FY-2D卫星TBB资料、NCEP1° × 1°再分析资料和地面自动站观测资料,对2008年7月20~22日和2012年7月20~22日两次由高原涡和西南涡相互作用,造成四川暴雨过程进行对比分析,结果表明:(1)强降雨落区与引导高原涡移动的高空槽有密切关系,高空槽的移动和变化大致决定了强降雨的落区。(2)造成两次暴雨过程的对流云团生成和发展虽然有一定的差异,但最终会发展合并形成一个MCC;并且强降雨位于对流云团TBB最大梯度区,一般靠近亮云核,并在亮云核的西北部。(3)两次暴雨过程期间,均有低层辐合高层辐散,对应着强的涡度和强的上升运动,并且散度、涡度和垂直速度都是增大的。(4)两次暴雨过程期间水汽来源存在着差异,但水汽是逐渐增强的,并且水汽辐合中心与强降雨落区相对应。  相似文献   

5.
低纬高原西南涡暴雨分析   总被引:7,自引:10,他引:7  
张秀年  段旭 《高原气象》2005,24(6):941-947
选取了由西南涡造成的低纬高原暴雨的8个个例,利用中尺度滤波和物理量诊断方法,对低纬高原西南涡暴雨进行了分析研究。研究表明,向东南方向移出的西南涡是造成低纬高原暴雨的重要天气系统,暴雨主要出现在西南涡的西南象限的中尺度辐合线、变形场和气旋之中。造成低纬高原暴雨的西南涡是比较深厚的,其正涡度区在垂直方向通常可达300-400hPa。这种西南涡不仅具有动力性的作用,而且其后部常伴有较强的冷空气活动。正是由于西南涡的动力扰动、冷空气活动和偏南暖湿气流的爬坡抬升共同导致了暴雨的发生。  相似文献   

6.
对2007年7月16-19日高原低涡东移形成的川渝地区大范围大暴雨过程,利用自动气象站雨量资料、常规观测资料、FY-2C TBB云图资料和T213分析场资料,采用天气动力学和中尺度诊断方法,分析了大暴雨的形成机制.结果表明:此次大范围大暴雨过程是高原低涡诱发西南低涡发展从而形成耦合系统造成的,其垂直上升运动气柱和涡柱的耦合发展与维持是低涡发生发展并产生持续性强降水的动力机制,对流层下部深厚不稳定层结的形成和维持是低涡发展并形成持续对流性降水的热力层结条件.  相似文献   

7.
引发暴雨的西南低涡特征分析   总被引:3,自引:1,他引:3  
康岚  郝丽萍  牛俊丽 《高原气象》2011,30(6):1435-1443
利用NCEP1°×1°再分析资料、逐时卫星云图资料和自动站资料,分析了与4次暴雨过程密切相关的中尺度系统西南低涡。结果表明,引发暴雨的西南低涡相对于环境场是湿涡,南边界是主要水汽输送方向。在西南低涡形成阶段,整层均为正涡度,一般维持深厚的上升气流,具有较为深厚的暖心结构。在其发展旺盛阶段,正涡度呈上升趋势,对流层中低层...  相似文献   

8.
高原涡诱生西南涡特大暴雨成因的个例研究   总被引:19,自引:6,他引:19       下载免费PDF全文
赵玉春  王叶红 《高原气象》2010,29(4):819-831
利用多途径探测与再分析资料,通过诊断分析、数值模拟和敏感性试验,对2008年7月20~21日一次高原涡东移诱生西南涡并引发川中特大暴雨的天气过程进行了初步分析,探讨了西南涡特大暴雨发生的中尺度环境场特征,特殊地形和非绝热物理过程在高原涡东移诱生西南涡特大暴雨中的作用。结果表明,高原涡形成后沿高原东北侧下滑,在四川盆地诱生出西南涡,川中特大暴雨在西南涡形成过程中由强中尺度对流系统(MCSs)的活动造成。高原涡东移诱生的低层偏东气流在川西高原东侧地形的动力强迫抬升作用下,释放对流有效位能激发出MCSs产生强降水,降水凝结潜热加热反馈驱动西南涡快速发展。地形的动力作用仅能形成浅薄的西南涡,降水凝结潜热的加入才能使西南涡充分发展。高原涡的发展主要受地面热通量影响,它的发展与否在很大程度上决定西南涡能否形成。盆地周边高大山脉对西南涡的位置分别有不同程度的影响,而盆地周边高大山脉上叠加的中小尺度地形对西南涡和暴雨带的整体位置影响不大,在一定程度上影响暴雨的落区。  相似文献   

9.
为进一步认识高原涡对盆地西南地区暴雨过程的影响,总结该区域暴雨预报经验,本文利用2001~2011年高原涡切变线年鉴、MICAPS实况天气图、盆地西南地区气象站日降雨量资料以及NCEP再分析资料,对引起盆地西南地区暴雨过程的高原涡特征进行总结分析,得到结论:1)引发盆地西南地区产生暴雨量级以上降雨的高原涡过程多发生在每年7月;高原涡东移将对盆地西南地区产生明显降雨;48小时后大部分高原涡减弱消失,少数继续东移或东南移;2)引发盆地西南地区产生暴雨的高原涡通常是暖性高原涡,高原涡东移48小时后有明显的冷平流入侵转变成斜压性低涡;这一类高原涡常常与高原切变、西南低涡、副高、低空急流以及南亚高压等影响系统相配合,共同作用产生一次暴雨过程;3)引发的盆地西南地区暴雨的高原涡过程的温湿场特征为:500hPa高原东部到盆地上空的大气高温高湿的特征明显,700hPa和850hPa盆地高温高湿,同时垂直上升运动旺盛且随高度向北倾斜。   相似文献   

10.
为了进一步研究高原涡、西南涡对西南地区暴雨的影响,本文用中国气象局自动站与CMORPH降水数据融合的逐时降水资料、国家卫星气象中心的逐时FY-2E卫星的云顶亮温(TBB)资料、欧洲气象资料中心(ERA-interim)的再分析资料,通过天气学诊断分析方法以及拉格朗日轨迹模式HYSPLITv4.9,对发生在四川盆地的有高原涡东移影响西南涡发展引发暴雨的两次过程进行对比分析,发现:(1)两次暴雨过程的降水强度和分布有明显区别,并且TBB活动特征显示在过程一中有MCC(Mesoscale Convective Complex)的产生和发展,过程二则没有。(2)对于过程一,500 hPa上,高原涡逐渐减弱为高原槽并伸展到四川盆地上空,850 hPa上,在鞍型场附近有MCC的产生和发展,200 hPa上,高原涡在南亚高压北部偏西风急流下方的强辐散区内,位于南亚高压东南侧急流区下方稳定少动,偏东风急流北部有辐散中心,有利于西南涡的加强。对于过程二,500 hPa高原涡东移在四川盆地上空与西南涡耦合,形成一个稳定且深厚的系统,这也是过程二的暴雨强度比过程一强的最主要原因。200 hPa上,四川盆地始终位于南亚高压东侧的西北气流中,“抽吸作用”明显。(3)在过程一中,位涡逐渐东传且位涡增加的地方对应强降水区与MCC发展区,反映了暴雨和位涡的发展基本一致。在过程二中,中层位涡高值区从高原上东移并下传至盆地上空,两涡耦合使得上下层打通,位涡值比耦合之前单独的两涡强度更强。 MCC产生的必要条件是中层大气要有强正涡度、强辐合和强上升运动,在未产生MCC前,过程一与过程二在盆地上空的动力条件甚至是相反的;从热力条件看,过程一中有明显的干冷空气入侵,增强不稳定条件,有利于MCC的产生并引发强降水;另一方面,本文也应证了二阶位涡的水平分布与暴雨落区有较好的对应关系。(4)通过拉格朗日方法的水汽轨迹追踪模式和聚类分析方法分析可得两次暴雨过程的水汽输送源地和通道也有明显区别,过程一主要有两条水汽通道,通道一来自阿拉伯海和孟加拉湾洋面的底层,通道二来自四川南部750 m以下高度;而过程二的主要水汽输送通道有三条,通道一来自西方地中海、黑海和里海上空1500~2500 m高度附近,通道二来自阿拉伯海和印度洋的底层,通道三的水汽从孟加拉湾低层绕过云贵高原直接输送到四川盆地。  相似文献   

11.
一次高原涡和西南涡作用下强降水的回波结构和演变分析   总被引:2,自引:1,他引:2  
周淼  刘黎平  王红艳 《气象学报》2014,72(3):554-569
2009年7月30—31日,青藏高原东侧背风坡发生了一次持续性强降水过程。在高原涡和西南涡相继出现并相互作用的天气环境中,四川盆地内生成了3个中尺度对流系统。使用新一代天气雷达组网的反射率因子,美国环境预报中心(NCEP)再分析资料,以及热带测雨卫星搭载的测雨雷达(TRMM PR)反射率因子,可以得到这次暴雨的发展演变及其三维结构特征。通过与TRMM PR探测资料的对比验证,地基组网雷达的结果与其非常一致,基本能反映出对流系统的演变全貌,而在高原和山区地基雷达缺测的区域,测雨雷达探测资料可以做为补充。分析表明,降水落区的低层正涡度和水汽辐合上升与高层负涡度和水汽辐散相配合,是触发暴雨的有利条件。第1个降水系统位于高原涡东南侧,随着高原涡的移动衰亡移出盆地并最终消散,降水系统和高原涡在时间上有滞后相关,二者移动速度的突变较为一致;第2和第3个降水系统在西南涡出现的时段强烈发展,在局地停留维持并打通成为一条沿山脉走向的贯穿整个盆地的混合降水回波带,在西南涡发展至成熟阶段给四川盆地南部带来最大小时降水,降水系统和西南涡的相关无论在强度还是移速上都非常显著。在复杂的地形条件下,青藏高原和四川盆地相接处,降水云团的0℃层高度并未随地表发生明显变化,但降水云团进入盆地后,低于0℃层高度的降水粒子融化变为液相,使得云团从对流型降水变为分层结构的层云降水。  相似文献   

12.
屠妮妮  李跃清 《干旱气象》2014,32(6):962-971
利用NCEP再分析格点资料、常规观测资料、自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料,对2013年6月29日至7月1日发生在四川东部的大暴雨过程进行分析,结合涡度收支方程重点分析了引发这次大暴雨的西南涡结构。结果表明:在西南低涡发生发展过程中,对低涡发展起直接作用的是水平辐合辐散项和水平平流项,低涡形成前水平辐合辐散项起主要贡献,低涡形成后水平平流项贡献增大,并在对流层中低层以正贡献为主,扭转项贡献最小,而垂直输送项在低涡形成前期以正贡献为主,低涡减弱阶段以负贡献为主;在西南低涡形成前期,对流层高层有位涡大值区向下传输至中层,中高层正位涡叠加在低层负位涡之上,有利于低层低涡的发展及不稳定能量的存储与释放,是低涡维持发展的重要因素。  相似文献   

13.
高原涡与西南涡耦合作用的个例诊断   总被引:29,自引:30,他引:29  
对1982年7月26~28日由500hPa高原低涡与850hPa四川盆地浅薄低涡耦合作用引发盆地低涡强烈发展与大面积特大暴雨天气发生的机理进行了诊断研究。结果表明,高原低涡东移到100°E附近时,其低涡东部的正涡度平流与负值非平衡强迫与850hPa四川盆地浅薄低涡发生垂直叠加时,两者之间发生耦合作用。导致盆地浅薄低涡与500hPa高原涡同时发展,四川盆地发生大面积暴雨。  相似文献   

14.
利用1980-2008年探空资料和地面自动站资料,对重庆中西部西南低涡暴雨个例进行统计和合成分析。结果表明,重庆中西部西南低涡暴雨是在高空急流、高空槽、西太平洋副热带高压和西南低涡相互作用下产生的。对西南低涡的结构研究表明,高层以散度辐散为主,700 hPa附近为气旋性旋转,800 hPa及以下以辐合为主,且700 hPa正涡度中心南侧由于低层辐合、高层辐散抽吸的共同作用造成的上升运动更显著,这一区域恰恰对应暴雨落区。分析v分量发现,暴雨落区主要位于南北风最大值中心连线附近,或其连线北侧等值线密集区,对重庆暴雨预报具有指示意义。分析低空急流和水汽条件表明,重庆地区充沛的水汽输送为暴雨的产生提供了有利条件,孟加拉湾是主要水汽源地。  相似文献   

15.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

16.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

17.
2014年7月14日高原低涡降水过程观测分析   总被引:3,自引:0,他引:3       下载免费PDF全文
赵平  袁溢 《应用气象学报》2017,28(5):532-543
利用第三次青藏高原大气科学试验的多种雷达、雨滴谱仪以及MODIS卫星观测资料、常规气象站地面和高空观测资料,针对2014年7月14日发生在青藏高原中部那曲地区的一次降水过程,研究了降水的时空变化特征,触发不同阶段降水的天气尺度和中尺度环流系统以及相关的云降水物理特征。从降水演变特征看,这次降水过程包括3个阶段,即发生在下午的强降水阶段和夜间的两个弱降水阶段。从影响系统看,下午的降水主要由天气尺度的高原低涡发展引起,此时那曲位于低涡中心前部的中尺度辐合线上;发生在晚上的降水主要与高原低涡前部的暖湿东南气流爬越地形有关,东南气流为产生降水提供了有利的水汽、大气不稳定和浅薄的动力抬升条件。从云降水微物理特征看,高原低涡降水初期,低涡前部的上升运动深厚,对流发展明显,而后期的对流性减弱。东南气流爬坡引起的地形降水表现出层状云降水的特征,高原低涡降水的雨滴谱分布较宽(0.3~4.9 mm),而夜间降水过程的雨滴谱分布较窄(0.3~2.1 mm)。  相似文献   

18.
讨论了西南低涡在6~8月对安康降水的影响,发现尽管西南低涡对安康降水有较大影响,但差异非常明显,选取1978-07-14~16日典型的低涡降水过程,从形势场和能量场进行了分析,揭示了这类降水的基本特征,对准确预报这类系统,减少预报失误,具有极其重要的意义。  相似文献   

19.
利用2012~2016年Micaps天气图资料和《西南低涡年鉴》,对西南低涡及不同涡源西南涡的变化特征、活动期和移动特征以及对降水的影响等进行了统计分析。结果表明:(1)西南低涡平均每年生成95次,但各年差异大。其中,九龙涡最多,盆地涡次之,小金涡最少。西南低涡多发时段在春季与夏初,其中,九龙涡多发时段在春季与夏季,盆地涡多发时段在冬季与春初,小金涡多发时段在冬末与春季。(2)西南低涡活动主要在4~7月,小金涡最长生命史可达168h,在7月;九龙涡最长生命史156h,在5月;盆地涡最长生命史144h,在4月。西南低涡大多数在生成后24h内消失。在12月的西南低涡生命史最短,绝大部分在24h内。(3)西南低涡有三分之一能移出涡源区。其中,九龙涡移出的个数最多,盆地涡其次,小金涡移出的个数最少,但移出几率最高。3~6月是西南低涡移出的主要时段。其中,九龙涡主要移出时段在4~7月;盆地涡主要移出时段在1~5月;小金涡主要移出时段在2~5月。(4)西南低涡主要移动路径是东北、东、东南。其中,九龙涡以东北移为主;盆地涡以东北移、东移为主;小金涡以东移、东南移为主。(5)除冬季、春初外,不同涡源西南涡不论活动时间长短,都会造成降水,九龙涡造成的降水一般比盆地涡大。西南涡造成的很强降水多出现在6~7月。   相似文献   

20.
一次西南涡暴雨的等熵位涡特征分析   总被引:3,自引:0,他引:3  
应用常规资料和0.5°×0.5°的GFS再分析资料,对2010年7月19日发生在河北山东的一次西南涡暴雨过程产生的条件及其等熵位涡演变特征进行了分析。结果表明:西南涡、高、低空急流、地面低压是这次暴雨过程的主要影响系统;等熵位涡的演变和形态对冷空气活动有很好的示踪作用;等熵位涡中心两侧气流辐合,利于地面低压发展;高位涡下传,导致了大暴雨产生;等熵位涡大值区及移动方向与降水落区有很好的对应关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号