首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims at a new quantification of neotectonic deformation of the central part of the Pannonian Basin. We use terrace levels and associated travertine as well as speleothem data along the Danube River to quantify its incision rate and thus, estimate the amount and rate of uplift at the axis of the Hungarian Mountain Range (HMR).

Several terrace levels and other geomorphic features along the Danube river are indicative for Quaternary uplift of the axial part of the emerging Hungarian Mountain Range. While the correlative terraces are at considerable height at the axis of the HMR, the terraces are gradually dipping below the basin fill of the adjacent lowlands. The correlation of the terrace segments is difficult because of their poor preservation, small size and variable height. The geomorphologic horizons indicate gradual incision of the river throughout the Quaternary during simultaneous deformation. However, no reliable chronological data have been available so far to quantify landscape-forming processes such as uplift, incision or erosion rates.

A reconsideration of existing published data for three consecutive segments of the Danube valley yields incision rates between 0.14 and 0.41 mm/year for the last 360 ky, with the highest value for the area of the Danube Bend. Accordingly, the middle to late Quaternary uplift rate of the axial zone of the HMR exceeded significantly that of the marginal areas. These rates represent an approximation as some quantitative data are still controversial. Our results suggest that formation of the Danube terraces is result of river incision triggered by the uplift of the HMR and modified by periodic climate changes.  相似文献   


2.
Mantle helium in Sacramento basin natural gas wells   总被引:16,自引:0,他引:16  
Helium isotope ratios in Sacramento basin natural gas wells show a strong mantle signal. The 3He/4He ratios range from 0.11 times the atmospheric ratio (0.11 RA) in the Rio Vista field to 2.75 RA in the Moon Bend field, indicating that 1% to 34% of the helium is mantle-derived. 3He/4He versus CH4/4He ratios provide evidence of two-component mixing between crustal and magmatic end-members. Extrapolation of the linear regression line to CH4/4He = 0 gives a hypothetical magmatic end-member 3He/4He ratio of 3.84 RA, half the typical mantle ratio. This indicates that the magmatic end-member may actually represent a mixture of mantle and crustal helium. Gases which deviate from the simple two-component mixture can be explained by addition of pure methane, radiogenic 4He, or a high N2-He component with 3He/4He = 0.6 Ra to 1.0 RA. The CH4/3He ratio of the magmatic end-member remains poorly constrained (0 to 3 × 109) and one cannot rule out the possibility that a significant proportion of the methane in some fields may be of deep-earth origin. However, fields with the highest 3He/4He ratios are associated with buried Plio-Pleistocene intrusives which have up-arched sediments to form hydrocarbon traps. The methane in these fields may have been produced by rapid thermal alteration of the intruded sediment. Elsewhere, the methane appears either to have migrated from deeply-buried sediments in the western basin or to have been produced by local microbial activity.  相似文献   

3.
A new model for the formation and relief evolution of the Danube Bend, northern Hungary, is discussed on geomorphological and volcanological grounds. We propose that the present-day U-shaped loop of the Danube Bend was partly inherited from the horseshoe caldera morphology of Keserűs Hill volcano, a mid-Miocene (ca 15 Ma) lava dome complex with an eroded central depression open to the north. According to combined palaeogeographical data and erosion rate calculations, the drainage pattern in the Danube Bend region was formed when Pleistocene tectonic movements resulted in river incision and sedimentary cover removal. Formation of the present curvature of the river was due to the exhumation of the horseshoe-shaped caldera as well as the surrounding resistant volcaniclastic successions (i.e. Visegrád Castle Hill) and a hilltop lava dome (Szent Mihály Hill). The process accelerated and the present narrow gorge of the Danube Bend was formed by very rapid, as young as late Quaternary differential tectonic uplift, also enhancing the original volcanic morphology. On the basis of comparative long-term erosion-rate calculations, we estimated successive elevation changes of the volcanic edifice, including partial burial in late Miocene time. In comparison with various order-of-magnitude changes, the mid-to-late Quaternary vertical movements show increased rates and/or base level drop in the Pannonian Basin.  相似文献   

4.
We report 3He/4He ratios from 10 peridotite xenoliths considered to represent samples of the uppermost mantle wedge above the downgoing Juan de Fuca Plate. Helium isotopic ratios in all but two of the xenoliths are similar to many arc magmas, roughly 7 Ra (1 Ra=atmospheric value). Based on decoupling of He from Sr, Nd and Os in these samples, similar He ratios in olivines from rims of larger xenoliths, and modeling of helium exchange between xenoliths and magmas, we interpret this ratio as that of helium in the host basalt. 3He/4He ratios as low as 4.2 Ra are found in olivines from the cores of the two largest xenoliths. These results cannot be reasonably explained by interaction with crustal material or post-eruptive ingrowth of 4He, but have been produced by interaction between mantle peridotite and a 4He-rich melt or fluid. Either 4He already present in the subducting oceanic crust has been retained to significant depths below Simcoe and then directly released behind the arc to interact with the mantle wedge, or, more likely, 4He has been produced by decay of U and Th in metasomatized mantle directly above the slab; a He-rich fluid or melt from this source has then ascended and modified the region of mantle represented by the xenoliths. This latter model is supported by estimates of residence time for the Simcoe metasomatic agent from U–Th–Pb isotopic systematics of pyroxenes from the Simcoe peridotites, estimated U and Th concentrations in the source of the fluid or melt, and commonly assumed patterns of helium behavior. This model is also consistent with higher 3He/4He ratios typically measured in arc samples; the portion of sub-arc mantle with such low He isotope ratios may be quite small, but the Simcoe xenoliths record a much larger volumetric contribution of the He-rich metasomatic agent than do arc lavas.  相似文献   

5.
青藏高原东缘具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元 ,本文以岷江作为切入点 ,研究了该地区河流下蚀速率与山脉的隆升作用之间的相互关系。在建立岷江阶地序列的基础上 ,利用阶地高程和热释光年代学测年资料分别定量计算了岷江在川西高原、龙门山和成都盆地的下蚀速率 ,结果表明岷江各河段的下蚀速率明显不同 ,分别为 1.0 7~ 1.6 1mm / a、1.81m m/ a和 0 .5 9mm / a;在龙门山地区岷江的下蚀速率最高 ,约为川西高原地区的 1.5倍 ,约为成都平原地区的 3倍 ;而同一河段不同时期岷江的下蚀速率基本是连续的 ,具有很好的线性关系 ,可作为该河段整个河谷的下蚀速率。基于龙门山的表面隆升速率 (0 .3~ 0 .4 mm / a) ,在约束局部侵蚀基准面和气候变化对阶地形成的控制作用的基础上 ,本文建立了青藏高原东缘岷江下蚀速率与龙门山表面隆升速率之间的线性关系 ,结果表明河流下蚀速率约为山脉表面隆升速率的 5倍。根据龙门山表面在隆升速率和下切速率等方面均大于川西高原 ,并结合龙门山活动构造以走滑作用为主 ,笔者认为青藏高原东缘的边缘山脉以剥蚀隆升为主 ,兼有构造隆升作用。最后 ,根据岷江最大切割深度所需的时间 (3.4 8Ma)和成都盆地最古老的岷江冲积扇大邑砾岩的时间 (3.6 Ma  相似文献   

6.
P.R. Castillo  P. Scarsi  H. Craig   《Chemical Geology》2007,240(3-4):205-221
The classic hotspot hypothesis [Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature 230, 42–43], which posits that linear volcanic chains are traces of fixed plumes in the mantle on moving lithospheric plates, was instrumental in elevating the plate tectonics paradigm in the 1960s into a modern Earth Science theory. The hypothesis itself, however, remains conjectural because many of its predictions, particularly the simple age-progressive type of volcanism, are not observed in many linear volcanic chains. As an alternative explanation, it is proposed that linear volcanic chains are formed through magmatism along pre-existing lines of weakness such as transform zones and old sutures, or along cracks created by stresses on lithospheric plates. The Marquesas linear volcanic chain in south-central Pacific has geologic features that are consistent with some of the predictions of both hypotheses. To better constrain the origin of this volcanic chain, we collected major and trace element and Sr, Nd, Pb, and He isotopic data from several Marquesan lavas. Our new analyses combined with literature data classify the samples into the well established tholeiitic to mildly alkalic, low 87Sr/86Sr, high 143Nd/144Nd, shield-building volcanic phase lava group and highly alkalic, high 87Sr/86Sr, low 143Nd/144Nd, post-shield phase group. Lead isotopes show generally higher 206Pb/204Pb ratios and suggest evidence of crustal assimilation for the shield-building phase lavas, consistent with the argument that the shield-building phase volcanism has a lithospheric source component. On the other hand, post-shield phase lavas that are predicted to represent the true composition of the mantle source by the hotspot hypothesis have higher 3He/4He ratios and these are coupled to other geochemical tracers. Thus our results show that the Marquesas volcanic chain, similar to many other linear volcanic chains, has a high 3He/4He component in its mantle source. The presence of such a distinct source component cannot be easily explained by dispersed upper mantle heterogeneities, but provides a powerful constraint for the hotspot origin of many linear volcanic chains.  相似文献   

7.
南岭中段主要锡矿床He、Ar同位素组成及其意义   总被引:8,自引:0,他引:8  
对南岭中段主要锡矿床的黄铁矿等进行了流体包裹体的He、Ar同位素研究。结果表明,成矿流体的40Ar/36Ar≈288~371,3He/4He≈0.09~28.58Ra ,不同地区流体包裹体He、Ar浓度变化较大,而在同一地区40Ar/36Ar、3He/4He值比较一致;40Ar/36Ar值介于大气饱和水(包括大气降水和海水)的同位素组成(40Ar/36Ar≈295.5)和夏威夷热点(40Ar/36Ar=350~360)之间,3He/4He值大大高于大陆地壳特征值(3He/4He≈0.03Ra),介于地壳特征值与原始地幔特征值(3He/4He≈8.57Ra)和夏威夷热点特征值(3He/4He≈27.14Ra)之间,表明成矿流体与地幔柱的活动有关,为地幔、地壳和大气水的混合产物,以地幔流体为主。这一结果为南岭地区锡多金属矿床为壳幔相互作用的产物及区域地幔柱的存在提供了新证据。  相似文献   

8.
Active faulting in the dead sea rift   总被引:8,自引:0,他引:8  
Manifestations of Late Quaternary and Holocene faulting were studied in a 500 km long segment of the Dead Sea transform (rift). Most prominent are left-slip faults, whose characteristic physiographic features are recognizable along most of the studied segment. Where these faults bend or are stepped to the left, rhomb-shaped grabens (or pull aparts) are produced, forming depressions. In the reverse situation compressional features such as pressure ridges, domes and folds form positive topographic features. Such structures are combined on a variety of scales ranging from a few hundred meters long to tens of kilometers. Normal faults, sub-parallel to the left slip faults, produce a trough-like valley along much of the Dead Sea transform, but are most prominent along the margins of the large rhomb-grabens, e.g., the Dead Sea trough. They apparently record a small component of transverse extension. Generally, their motion is slow: young slip did not occur along some segments during the last few 104 y. Elsewhere throws of 10–20 m at least occurred in this period. The Dead Sea transform is seismically active. The instrumental and historic records indicate a seismic slip rate of 0.15–0.35 cm/y during the last 1000–1500 y, while estimates of the average Pliocene—Pleistocene rate are 0.7–1.0 cm/y. Either much creep takes place, or the slip rate varies over periods of a few 103 y.  相似文献   

9.
10.
The concentrations of cosmogenic 3He have been measured in a series of basaltic drill core samples from Hawaiian volcanoes Haleakala and Mauna Loa. The 3He concentration in the surface of a radiocarbon dated Mauna Loa flow (20,000 years) gives reasonable agreement with a theoretical production rate of 140 atoms g−1yr−1 and suggests that the uncertainty in this rate is roughly 10%. The results illustrate the feasibility of using 3He to measure exposure ages of young basaltic lava flows and for measuring erosion rates. Erosion rates calculated from the three Haleakala cores range from 7 to 11 meters/million years. The drill core data demonstrate that accurate depth control is crucial to the use and evaluation of cosmogenic helium. Depth profiles from several of the older cores display a non-exponential depth dependence of 3Hec below 170 g cm−2, which is attributed to the contribution from 6Li(n, )T, where the neutrons are from stopped muons. This has important implications for depth dependence of cosmogenic 3He because muons are weakly attenuated compared to the nucleonic component that produces spallation.  相似文献   

11.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

12.
4He是测定地下水年龄理想的示踪剂之一,由于测年时间尺度及多成因等问题,其测年结果通常与14C测年结果缺乏一致性。通过采集河北平原第四系承压水中的惰性气体(He、Ne、Ar、Kr、Xe)及14C样品,利用CE(封闭系统平衡)模型分离出地下水中的放射性成因4Herad浓度为(5.43~8 994)×10-8 cm3·STP/g,进而得到地下水的4He年龄为8.8~55.9 ka;相应样品的14C测年结果为7.7~35.2 ka。结果表明,2种测年结果在河北平原具有很好的一致性。  相似文献   

13.
雅鲁藏布江缝合带造山型金成矿带是近些年来在青藏高原新确立的碰撞造山型金成矿带,成矿流体是一套CO2-H2 O-NaCl-CH4-N2体系,以变质水为主.为探讨地幔组分对成矿的影响,本文选取雅鲁藏布江缝合带内邦布矿床和念扎矿床两个大型的造山型金矿为研究对象,对与成矿相关的黄铁矿及胶黄铁矿进行He-Ar同位素分析.结果显示...  相似文献   

14.
对取自赣南地区10个温泉的地热气体进行了气体化学成分及氦、碳、氖同位素组成的分析。该区地热气体可分为CO2型和N2型两种类型。CO2型地热气体分布在赣南东南部地区,主要成分是CO2,占总体积96.47%以上,二氧化碳气体的δ13C值为 -5.50‰~-3.49‰(PDB),平均为 -4.66‰,为幔源无机成因,其氦同位素组成为1.36~2.27 Ra,具有明显的幔源成因特征,最高约有28.2%的氦源于地幔,其N2-Ar-He关系研究表明,该型地热气体中的氮源于地幔-地壳-大气混合成因。研究揭示该区CO2型地热气体属幔源无机成因气,是地幔脱气作用的产物。N2型地热气体分布在赣南西部地区,N2含量占91.04%以上,其中二氧化碳气体的δ13C值为 -23.7‰~-12.6‰,平均为 -17.82‰,为壳源有机成因,其氦同位素组成为0.06~0.13 Ra,具有明显的壳源放射性成因特征,3He/4He 与 4He/20Ne关系和He-Ar-N2关系研究表明,N2型温泉气主要来源于大气,并有壳源气体的贡献。  相似文献   

15.
《Quaternary Science Reviews》2007,26(22-24):2758-2782
The paper discusses the Quaternary evolution of the Danube and Tisza rivers and their main tributaries in the context of evolution of the entire Pannonian Basin, which is Europe's largest intramontane basin, within the Alp–Carpathian orogen. The palaeo-drainage reconstruction of the Pannonian Basin for the pre-Quaternary period is outlined in connection with the gradual regression of Lake Pannon since the Late Miocene. Deltas of rivers that entered the basin from the northwest and northeast were gradually transformed into extended alluvial plains; thus, the earliest possible ancestor of the Danube coming southeastwards from the Alps could be as old as Late Miocene. By the Pliocene the whole Lake Pannon was infilled. The former extensional basin formation was replaced by a compresional stress field, which resulted in an uplift of the marginal flanks and late-stage subsidence anomalies. The increasing relief led to the formation of the Quaternary drainage pattern. The actively subsiding young basins were filled by fluvial sediments, transported by the Danube and Tisza river systems from the uplifting mountains. Between the subsiding regions of the Little and Great Plains, the Danube has formed an antecedent valley with terrace staircases between the uplifting sections of the Transdanubian Range and the North Midmountains. The formation of the terraces is attributed to periodic climate changes during the Pleistocene combined with differences in the uplift rate. The paper gives a complex overview of the classical chronology of the six terraces based on various data sources: mostly dating of loess/paleosol sequences, travertines, aeolian sand, and tephra strata overlying the fluvial sediments, complemented by scattered vertebrate faunal data and archaeological evidence directly from the terrace sediments.The Quaternary drainage pattern evolution of the Great Plain, with a strong tectonic control, is discussed in detail. Rivers originating from the uplifting marginal areas were drawn towards the subsiding depressions which served as local base level. Changes in subsidence rates in space and time throughout the Quaternary resulted in the evolution of a complex drainage pattern. A special emphasis is placed on the Late Pleistocene–Holocene development of the Middle–Tisza region and the Körös basin, where the Berettyó–Körös Rivers form an eastern tributary system of the Tisza River. A comparative evaluation of these two areas is especially relevant, as they provide insights into large-scale Late Pleistocene avulsion of the Tisza River. OSL dating, complemented with inferred transport directions determined from heavy mineral analysis of fluvial sediments in the Körös basin, has revealed an ancient large meandering river system that can be identified with the palaeo-Tisza, which was flowing along a tectonically controlled depression during the Late Pleniglacial. Successions in the Middle Tisza region have allowed differentiation between the older channels of the palaeo-Bodrog River and the Sajó–Hernád alluvial fan and the younger meander belts of the new course of the Tisza. In the Tisza system, changes in river style (braided to various scales of meandering) show correspondence to millennial-scale climate changes of the last 25 ka, while in the Körös basin the effects of tectonics are overprinted onto the regional climatic signals.  相似文献   

16.
The Kunlun Range, a reactivated orogenic belt, constitutes the northern margin of the Tibetan Plateau. The extreme relief and major landforms of the Kunlun Range are a product of late Cenozoic tectonics and erosion. However, well-developed late Quaternary terraces that occur along the northern slope of the Kunlun Range probably resulted from climatic change rather than surface uplift. The terrace sequences formed in thick Quaternary valley fills and have total incision depths of 50–60 m. Optically stimulated luminescence dating was employed to place time controls on the valley fills and associated terraces. Dating results suggest that periods of significant aggradation were synchronous between different rivers and correspond to the last glacial stage. The abrupt change from aggradation to incision occurred between 21.9 ± 2.7 and 16 ± 2.2 ka, coincident with the last glacial–interglacial transition. Additional terraces developed during the late glacial period and early to middle Holocene. Based on a broader set of chronological data in northern Tibet, at least four regional incision periods can be recognized. Chronological data, terrace elevation profiles, and climate proxy records suggest that these terracing periods were triggered by cool and/or wet climatic conditions. A geometric survey of the riverbed longitudinal profile suggests that surface uplift serves as a potential dynamic forcing for long-term incision. A model is proposed for terrace formation as a response to climatic perturbation in an uplifted mountain range.  相似文献   

17.
The Fish Springs fault is a primary strand in the northern end of the Owens Valley fault zone (OVFZ). The Fish Springs fault is the northwest strand in a 3-km-wide left echelon step of the OVFZ which bounds the Poverty Hills bedrock high. The Fish Springs fault strikes approximately north-south, dips steeply to the east, and is marked by a prominent east-facing scarp. No other faults in the OVFZ have prominent east-facing scarps at the latitude of Fish Springs, which indicates that the Fish Springs fault has accommodated virtually all of the local late Quaternary vertical displacement on the OVFZ.

The Fish Springs fault exhibits normal dip slip with no measurable lateral slip. Vertical displacements of a Late Pleistocene (0.314 ± 0.036 Ma, 2σ) cinder cone and of an overlying Tahoe-age (0.065–0.195 m.y.) alluvial fan are 76±8 m and 31±3 m, respectively. The maximum vertical 3.3. m. Two nearly equal vertical displacements of the active stream channel in the Tioga-age fan total 2.2. m. Vertical displacement of a stream terrace incised into the cinder cone is 1.2 ± 0.3 m. The minute amount of incision into that terrace indicates that uplift of the terrace probably occurred during the 1872 Owens Valley earthquake.

Three displacements of 1.1 ± 0.2 m each apparently have occurred at the Tioga-age fan since the midpoint of the Tioga interval, allowing an average recurrence interval of 3500 to 9000 years. Based on the age and displacement of the cinder cone, the average late Quaternary vertical displacement rate is 0.24 ± 0.04 mm/yr (2σ). At this rate, and assuming an average vertical displacement of 1.1 ± 0.2 m per event, the average recurrence interval would be 4600 ± 1100 years (2σ). The recurrence interval for the Fish Springs fault is similar to that for a strand in the southern part of the OVFZ which also ruptured in 1872.

Right-lateral, normal oblique slip characterizes the OVFZ. The location of the Poverty Hills bedrock high at a left step in the north-northwest-striking fault zone is consistent with the style of slip of the zone. The pure normal slip on the north-striking Fish Springs fault and the alignment of local cinder cones along north-striking normal faults indicate that the late Quaternary maximum horizontal compression has been oriented north-south at the north end of the OVFZ. Data from southern Owens Valley indicate a similar stress regime there. Late Quaternary slip on the OVFZ is consistent with north-south maximum horizontal compression.  相似文献   


18.
Small-volume alkali basaltic volcanism has occurred intermittently for the past + 30 My across a vast area of thick continental crust from southern Siberia, through Mongolia to northeast China. With a lack of evidence for Basin-and-Range-type crustal extension or rifting, models to explain the widely dispersed, yet long-lived, volcanism tend to favour involvement of one or more mantle plume(s). We examine the range of 3He/4He isotope values in olivine phenocrysts from basalts, and their entrained mantle xenoliths, from Hamar Daban in southern Siberia, and Hangai in central Mongolia, in order to examine whether upwelling lower mantle appears to be present beneath central Asia and thus test the validity of the plume model for this region. Our results show that the maximum 3He/4He value for the Siberian basalts is 8.12 ± 0.2Ra, and the maximum value for Mongolian basalts is 9.5 ± 0.5Ra. These values suggest that there is no significant contribution from a high 3He/4He primordial component that would strongly argue a lower mantle source. Overlap with commonly reported values for MORB leads us to propose that the source of the magmatism derives from the shallow asthenosphere. Alternative models to a deeply sourced mantle plume that may be able to explain the magmatism include: a shallow thermal anomaly confined to the upper mantle but either fed laterally or caused by thermal blanketing of the large Asian landmass; replacement or delamination of the lowermost lithosphere in response to tectonic stresses; or large-scale mantle disturbance or overturn caused by a protracted history of subduction beneath central Asia that ended regionally with the Jurassic closure of the Mongol-Okhotsk Ocean, but continues further afield with the present Indo-Asia collision.  相似文献   

19.
长江三峡地区第四纪以来新构造上升速度和形式   总被引:10,自引:2,他引:10  
谢明 《第四纪研究》1990,10(4):308-315
本文以长江三峡地区各级夷平面和阶地作为重要标志,用地层学、古地磁测年、热释光测年和14C测年等手段,确定了它们的时代,从而分别计算2Ma、0.73Ma和0.2Ma以来的新构造上升速度。本文还探讨了新构造上升的特征:(1)长江三峡是一个以巴东为中心的不对称的新构造穹形隆起区,宜昌以东和万县以西是相对坳陷区;(2)2Ma以来,新构造上升节奏为缓慢—较快—较慢;(3)0.73Ma以来,新构造上升中心有向东迁移的趋势。  相似文献   

20.
The present-day drainage system of the Carpathian Basin originates from the gradual regression of the last marine transgression (brackish Pannonian Sea). The flow directions of the rivers including the Danube, are determined by the varying rates and locations of subsidence within the region. The Danube, which forms the main axis of the drainage network, first filled the depression of the Little Plain Lake and then, further southward, the Slavonian Lake. From the end of the Pliocene, the crustal movements which caused the uplift of the Transdanubian Mountains, forced the Danube to flow in an easterly direction, towards the antecedent Visegrid Gorge, and into the subsiding basins of the Great Plain. Climatic changes during the Pleistocene had the effect of forming up to seven fluvial terraces. The uplift of the mountains is demonstrated by the deformation of the terraces, while the subsidence of the Plains is proven by an accumulation of several hundred metres of sediment. The river only occupied its present position south of Budapest in the latest Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号