首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on terrestrial gravity data, in this paper we prepared a map of Bouguer anomalies, which was filtered to separate shallow and deep gravity sources. Based on a density model and gravimetric inversion techniques, the discontinuous crust-mantle boundary and the top of crystalline basement were modeled. Subsequently, the equivalent elastic thickness (Te) was evaluated, considering information from the crust-mantle discontinuity and topographic load, finding high Te values in the eastern Andean foothills and west of the Velasco range. These results are consistent with the positive isostatic and residual Bouguer anomaly values, which suggest the presence of high-density rocks in the mid-to upper crust. In addition, petrographic and geochemical analysis conducted in surface outcrops suggest a mantle origin.  相似文献   

2.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

3.
As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources.The residual gravity anomalies are derived by applying the concept of predicting gravity anomalies from topography. This can be accomplished by employing reductions similar to those used in some isostatic investigations, in which a regional topographic surface is used as the Bouguer reduction datum. The datum is derived by comparison of various harmonics of Bouguer anomalies and elevations of stations. Topography can be used to predict Bouguer anomalies because of isostatic compensation; the resultant anomalies can be considered high frequency residual anomalies or isostatic anomalies corrected for regional compensation. Such maps have been produced for Arizona, New Mexico, west Texas, and Chihuahua, Mexico.The main objective of the MT project is to produce a regional geoelectric contour map of the pervasive deep electrical conductor within the crust and/or upper mantle beneath the Colorado Plateau and the adjacent Basin and Range Province and Rio Grande Rift. The MT survey consists of 200 sites along several long profiles with site spacing of 15–20 km. Pre-existing available MT data are being integrated with the new data. After the data are processed, a one-dimensional inversion is applied to the sounding curve and used as a starting point for 2-D modeling. Such a project and ultimate map will be of major value in studying the regional geophysics and tectonics of the southwest United States as they now apply to HDR resources in particular and geothermal resources in general.Electrical conductivity anomalies of large areal extent are of particular interest in geothermal exploration. Correlation analysis of large conductive anomalies with other geophysical, geological, and geotectonic data is being performed. Preliminary analysis of the data has suggested several major regions of anomalously shallow high electrical conductivity. Among these is the Aquarius area of northwest Arizona which is the site of a longwavelength residual anomaly low, which when modeled and correlated with other geophysical data can be shown to be possibly related to low density and high temperature in the crust at depths of 20 km or less. Preliminary analysis of MT data indicates the possible existence of a mid-crustal high electrical conductivity anomaly in this same region.  相似文献   

4.
Published major-element analyses of Ethiopian volcanic rocks have been subjected to a systematic discriminant analysis. The plateau regions can be subdivided according to the proportions of alkaline and tholeiitic basalts. In northern Ethiopia, these subprovinces show increasing basalt alkalinity with time. The most voluminous basalts have lowest magnesium values, independent of the degree of alkalinity. Rift and Afar basalt chemistry falls within the spectrum observed for the plateau basalts, with no perceptible difference resulting from lithospheric attenuation beneath Afar. However, silicic volcanics of the Rift-Afar floor differ in bulk terms from those of the plateau margins in showing a stronger bias towards peralkalinity, and having higher Na/K values. Two particularly voluminous volcanic episodes have occurred in Ethiopia, dated at ?30–19 m.y. and 4.5–0 m.y. and which link well with one model for seafloor spreading in the Red Sea and Gulf of Aden. Evidence for a mantle hotspot under Ethiopia remains ambiguous.  相似文献   

5.
讨论了利用面波与布格重力异常联合反演三维地壳速度结构的新方法,并利用该方法联合反演获得山西断陷带地壳S波速度结构.通过建立速度与密度之间的经验关系,利用非线性迭代反演方法获得最终速度模型.结果显示,联合反演获得的速度模型可以同时提高对面波及重力数据的观测拟合程度,而面波单独反演得到的速度模型则无法很好的拟合重力观测数据.相比较,联合反演速度模型中的大同火山区中下地壳的低速异常幅值小于面波单独反演模型中低速异常体的幅值.联合反演速度模型结果揭示,吕梁山地区在中下地壳存在低速异常,并且和北部的大同火山区低速异常相连接,说明可能导致新生代以来大同火山区岩浆活动的上地幔构造活动(上地幔局部上涌,地幔柱)可能对山西断陷带的形成和构造活动起到了一定的控制作用,并且导致了吕梁山地区中下地壳的低速异常.  相似文献   

6.
重震反演中国东北地壳上地幔三维密度结构   总被引:5,自引:3,他引:2       下载免费PDF全文
本文利用重力和地震P波到时数据反演得到了中国东北地区地壳上地幔三维密度结构.与单一的重力或地震反演相比,重震反演一方面有效地克服了重力反演结果垂向分辨率低的问题,另一方面也提高了地震反演结果的可靠性.结果显示:中国东北地区的地壳及上地幔剩余密度异常分布与构造单元具有明显的相关性,造山带对应低密度异常,盆地对应高密度异常;区域内火山下方有明显的低密度体存在,可能是由于太平洋板块俯冲进入上地幔并部分滞留,在滞留板块深部脱水和软流圈热物质共同作用下产生了上涌岩浆,喷发后形成了火山.  相似文献   

7.
青藏高原东部玛多-沙马地区的重力场与深部构造   总被引:9,自引:4,他引:9  
根据青藏高原东部玛多-沙马(下察隅)重力剖面的重力数据资料,对该地区的重力场和深部地壳构造特征作了分析研究,提出青藏高原东部的布格重力异常是高原边缘高,内部低,地壳厚度是边缘薄,内部厚,平均地壳厚度为60km左右,在察隅-沙马地区,为负均衡异常区,因此,该地区是属于地壳上升的地区,此项结果,填补了察隅-沙马地区的均衡重力异常的空白。  相似文献   

8.
Recently observed features in the subsurface geology of the Haifa Bay area (northern Israel) have been evaluated using 3-D forward gravity and magnetic modeling and inversion schemes. The interpretation is based on updated petrophysical data of the Jurassic, Cretaceous and Tertiary sedimentary layers and volcanics. It has been shown that the Bouguer gravity anomalies correspond mainly to thickness variations in the Senonian to Tertiary sediments. The gravity effect of these sediments was calculated using their actual densities and structural setting as interpreted from seismic reflection data. This effect was removed from the Bouguer gravity in order to study the pre-Senonian geological structures. The pattern of residual gravity anomalies (named “stripped gravity”) is essentially different from the pattern of the Bouguer gravity. The prominent Carmel gravity high, clearly seen on the Bouguer gravity map, completely vanishes on the “stripped” gravity map. That suggests that this relatively positive anomaly is caused by the considerable thickness of the low-density young sediments in the surrounding areas and does not correspond to high-density magmatic rocks or crystalline basement uplift as previously suggested. The average densities of the Jurassic and Cretaceous volcanics are generally lower then those of the background sedimentary rocks. Volcanics are the main cause for magnetic anomalies onshore and offshore northern Israel. The magmatic root of the Asher volcanics is, most probably, located close to the Yagur fault. A large, deep-seated gabbroic intrusion is assumed to be located under the Mediterranean abyssal plain in the NW part of the study area. The Atlit marine gravity low appears to be caused by a thick Mesozoic and Tertiary sedimentary accumulation. The results presented should be of considerable assistance in delineating some aspects of hydrocarbon exploration in the area.  相似文献   

9.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

10.
青藏高原内部除大规模的东西向走滑断裂以外,另一个显著的地质特征就是在藏南及高原腹地广泛发育东西向的伸展构造,形成走向近南北的断裂构造,如亚东一谷露裂谷带及双湖断裂.伸展构造已经成为青藏高原地质研究的一个焦点问题.在羌塘地块89°E附近存在明显的低重力、负磁、深度达300 km的低速异常及连通壳幔的高导异常,且地表伴生大规模的新生代火山岩,这些特殊的地质及地球物理场特征的发生位置与地表双湖断裂的位置基本对应.本文通过卫星重力数据的多尺度小波分析结果发现,双湖断裂之下,存在一明显由上地壳一直向下延伸至地幔深部的低重力异常,说明双湖断裂向下延伸深度大,且上下连通性好.结合已有的地质和地球物理资料,认为由于双湖断裂的存在,使得深部幔源岩浆沿断裂构造薄弱带上涌,从而导致羌塘地块之下壳幔温度的升高及大规模部分熔融的发生.  相似文献   

11.
中国大陆及邻区岩石圈三维流变结构   总被引:15,自引:3,他引:12       下载免费PDF全文
依据地震波速得到的上地幔温度和气象台站记录的地表温度为约束,结合地表热流和热导率观测数据,利用有限元方法计算了中国大陆及邻区岩石圈三维热结构.基于此温度结果和GPS观测得到的应变率数据,以滑动摩擦、脆性破裂和蠕变三种强度机制为约束,计算得到了中国大陆及邻区岩石圈三维流变结构.结果显示:弱强度和低等效黏滞性系数的下地壳在中国大陆及邻区普遍存在,并且下地壳的流变强度和等效黏滞性系数比上地壳和岩石圈地幔一般要低1~2个数量级;中国大陆范围内青藏高原存在着厚度最大、强度最低的下地壳;青藏高原的岩石圈强度和等效黏滞性系数比华北、华南和印度板块的都要低;岩石圈流变结构的横向分布特征与重力梯度带和地形过渡带比较一致.  相似文献   

12.
用转换函数方法研究腾冲—临沧地区地壳结构   总被引:4,自引:1,他引:3       下载免费PDF全文
根据流动数字地震台网提供的三分量地震波形记录资料,应用转换函数及快速模拟退火算法对腾冲-临沧地区30个地震台站下的地壳横波速度结构进行了反演.反演结果说明,研究区壳幔边界清晰、莫霍界面附近速度跳跃明显,由此得出该区地壳厚度在40 km左右、并具有从南向北增厚趋势.一个普遍的现象是,在腾冲-宝山地块下地壳存在明显的低速带,低速带的厚度在10~20 km间.研究结果进一步表明各台站下方上地幔速度结构复杂.这些结果为探讨青藏高原东南缘下地壳的侧向黏性流动、碰撞板块边界处壳幔物质交换等均提供了重要的地球物理证据,为探讨印-藏汇聚过程中青藏高原东构造结岩石圈变形、高原隆升及其深部动力学有一定理论意义.  相似文献   

13.
本文利用GOCEL2观测重力梯度的五个独立分量(T_(xx),T_(zz),T_(xy),T_(xz),T_(yz)),联合EGM2008地球重力场模型计算垂直重力,反演计算了青藏高原及邻区0~120 km深度岩石圈三维密度结构.将经过低阶项改正、地形效应改正、沉积层界面起伏效应改正得到的剩余重力及重力梯度异常值作为观测值,以改正剩余量归一化权重作为观测权重,基于Tikhonov正则化理论建立反演目标函数.反演过程中,利用地震层析S波速度转换密度作为初始约束,通过非等权最小二乘迭代法计算得到最终反演密度.反演结果表明:(1)40 km深度,青藏高原内部为中地壳,表现为低密度,邻区为中下地壳,表现为高密度.青藏高原内部中地壳强低密度层主要分布在高原边界.其成因是印度板块俯冲和周围坚硬块体阻挡作用导致在高原边界形成的高应变积累闭锁区,为壳内低密度软弱物质的形成提供了条件.(2)80 km深度,青藏高原上地幔顶部显示出低密度的特征.高原内部东、中、西密度特征差异明显,低密度以95°E为中心线呈东西对称分布.以班公一怒江缝合带为中心,在拉萨块体和羌塘块体内从北向南出现了"低-高-低"的密度分布起伏特征.该特征与GRACE得到的莫霍面起伏特征一致,结合大地构造结果,这种起伏特征验证了印度、羌塘块体从南北两侧分别向喜马拉雅、拉萨地块挤入的双向俯冲模式.(3)四川盆地和鄂尔多斯盆地内,地壳高密度异常较地震波速异常明显偏低,表明古老的四川盆地和鄂尔多斯盆地比想象中更冷、更坚硬.塔里木盆地和柴达木盆地内壳、幔高密度的结构特征,对应地幔物质上涌.  相似文献   

14.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:2,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

15.
中国地壳厚度及上地幔密度分布(三维重力反演结果)   总被引:19,自引:1,他引:19       下载免费PDF全文
冯锐 《地震学报》1985,7(2):143-157
根据我国11平均布格重力异常图,采用Parker-Oldenbug位场反演方法,做了全国范围的三维重力反演。Parker的位场理论公式不仅数学上严密,而且运算速度甚高。本文将近些年大量的地震测深资料做为三维模型的控制点输入,并对反演计算采取了多种措施,以改善结果的合理性。本研究不仅得到了中国地区地壳厚度的分布,还首次给出了至120公里深处上地幔的密度分布。 结果表明,地壳厚度自东部沿海地区30——40公里逐渐增至青藏高原大部分地区的68公里,东部变化平缓,西部复杂,与大地构造有一定对应性。青藏高原及西部地区的上地幔密度总体偏高,一般3.40——3.65克/厘米3。东部广大区域在3.23——3.30克/厘米3。东部重力梯度带反映着下地壳与上地幔中一条深层构造带的存在,它不仅是地壳厚度陡变带,也是上地幔中的高密度带(3.29——3.35克/厘米3),具有大区域性的控制作用。重力的均衡调整是青藏高原隆起的重要因素之一。 作者初步推断,中国地区的上地幔可大体分为青藏高原区、中部过渡区和东部正常区等三个大区,反映着上地幔结构的横向不均匀性。据此,本文解释了某些地球物理现象。   相似文献   

16.
蒙古及周边地区重力异常和地壳不均匀体分布   总被引:4,自引:1,他引:3       下载免费PDF全文
基于全球EGM2008自由空气重力异常模型,本文计算了蒙古及周边地区的布格重力异常和AiryHeiskanen均衡重力异常.在此基础上,本文采用Crust 1.0地壳模型为参考,通过重力正演方法,对蒙古及周边地区不同深度地壳密度结构模型的重力异常进行了计算,并对得到的正演布格重力异常与实际重力异常进行了对比和分析.研究结果表明:蒙古西部杭爱山地区与阿尔泰山地区的构造变形差异性明显,现今均衡重力异常中杭爱山周边没有明显的均衡异常高值区,而阿尔泰山地区西南方向存在均衡重力异常高值分布,分析与新构造运动密切相关;Crust 1.0模型给出的壳幔横向密度不均匀体分布对于计算Moho面起伏引起的重力异常作用明显;Crust 1.0给出的地壳内界面变形可以反映深大活动断裂的深部构造变形.研究结果对于认识蒙古东西部构造特征差异,以及现今西部活动断裂的地球物理场特征具有参考意义,也可以为进一步应用Crust 1.0模型为参考开展三维密度结构反演提供一定帮助.  相似文献   

17.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

18.
Tanlu fault zone(TLFZ)is the largest active fault zone in eastern China.It is characterized by complex tectonic evolution and multiple faults and marks the boundary between the North and South China blocks.An in-depth understanding of the distinct crustal structures of both parts of the TLFZ will provide valuable insights into the lithospheric and crustal thinning in eastern China,extensive magmatism since the Mesozoic,and formation mechanisms of metallogenic belts along the Yangtze River.In this study,a two-layer H-κ stacking approach was adopted to estimate the thicknesses of the sediment and crystalline crust as well as the corresponding vp/vs ratios based on high-quality teleseismic P-wave receiver functions recorded by permanent and temporary stations in and around the TLFZ.The geological units in the study region were delineated,especially the crustal structures beneath extensive sedimentary basins on both sides of the TLFZ.The following conclusions can be drawn:(1)The crustal thickness in and around the TLFZ greatly varies depending on the segment.In the northern segment,the crust is relatively thin beneath the eastern part of the Songliao Basin,a broad uplift of the Moho can be observed,and the Moho descends from south to north.The crust below the central and southern segments becomes thinner from west to east.The thickness of the crust is less than 30 km toward the eastern side of the boundary between the Jiangsu and Anhui provinces,that is,significantly thinner than in other areas.In terms of the vp/vs ratios,high anomalies were detected in the central-southern segments of the TLFZ,indicating the upwelling of deep mantle magma via deep faults.(2)Positive isostatic gravity anomalies were observed in the eastern part of the northern segment of the TLFZ and in the eastern part of the Suwan segment.The crustal thickness is smaller than that obtained from the Airy model of isostasy.This suggests that the lower crust in this area may have experienced intensive transformation processes,which may be related to crustal thinning(caused by crustal extension)and the strong uplift of the mantle in eastern China.The isostatic gravity anomalies between the eastern and western parts of the TLFZ indicate that the fault zone plays a dominant role in controlling the development of the deep crustal structure.(3)Significant crustal thinning was observed beneath the eastern part of the boundary between the Jiangsu and Anhui provinces in the southern segment of the TLFZ,suggesting that this area is prone to lithospheric thinning of the North China Craton.Due to the subduction,compression,and retreat of the Paleo-Pacific Plate during the Yanshanian Period as well as the dehydration of subducting oceanic crust(within subduction zones),the asthenosphere and oceanic crust in eastern China partially melted,resulting in mantle enrichment.The basic magma from the mantle is accumulated at the base of the crust,leading to magmatic underplating.In areas with weak topography toward the east of the TLFZ,magma rises to the upper crust and surface,resulting in the enrichment of multiple'metal deposits in this area.  相似文献   

19.
用布置在亚东—格尔木的164个流动地震台站记录的926个远震事件的24241条射线,进行远震P波层析成像处理,高分辨率的西藏高原上地幔的速度结构图,显示了印度巨厚地幔岩石圈在向高原之下推进的过程中,在高喜马拉雅之下拆分成上、下两层,这是发生的第一次拆沉. 下层从高喜马拉雅以下约以22°的角度向高原北部插入到350km 深;而其上层则向北伸展直到雁石坪,并构成了高原薄的地幔岩石圈. 在雁石坪北(33.7°N),当其与亚洲大陆岩石圈地幔相遇后发生断离并下沉. 再次证实了五道梁(35.27°N)深部低速体的存在,本区内地壳内低速物质可能与上述运动有联系,反映了深层热物质的上涌.  相似文献   

20.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号