首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用全国2287个气象观测站1961—2016年逐日降水资料,基于对暴雨区进行连续追踪的思路,采用暴雨相邻站点数和暴雨区中心距离确定了中国区域性暴雨过程的客观识别方法;根据区域性暴雨过程的平均强度、持续时间和平均范围构建了区域性暴雨过程的综合强度评估模型。利用该客观方法对1961—2016年中国的区域性暴雨过程进行识别,并分析其气候和气候变化特征。结果显示:我国区域性暴雨过程年均38.5次;区域性暴雨过程一年各月均可出现,但主要出现在4—9月,其中7、8月发生最为频繁,6月区域性暴雨过程持续时间长、范围广、综合强度强,这与长江中下游地区梅雨现象有关。一年中,区域性暴雨过程首次出现日期平均为3月6日,末次出现日期平均为11月14日;1961—2016年,我国年区域性暴雨过程首次出现日期呈明显提前、末次日期呈显著推后、暴雨期呈显著延长的变化趋势;年发生总频次呈微弱增多,较强区域性暴雨过程次数呈明显增加趋势;区域性暴雨过程的覆盖范围和综合强度均呈显著增大趋势。南方型区域暴雨过程变化趋势与全国的基本一致;北方型首次日期呈提前、末次日期呈推后趋势,发生频次有微弱减少趋势,覆盖范围、持续时间、综合强度均无明显变化趋势。  相似文献   

2.
西南地区东部区域性暴雨事件的客观识别及其变化特征   总被引:1,自引:0,他引:1  
《高原气象》2021,40(4):789-800
利用区域性极端事件客观识别方法(OITREE)和1961-2018年西南地区东部118站逐日降水资料对该区域近58年的区域性暴雨事件进行了识别,确定了相应的OITREE方法的参数组,共识别得出246次区域性暴雨事件,其中25次达到极端强度,2004年9月3-6日发生的区域性暴雨事件是西南地区东部近58年来综合强度最强的一次区域性暴雨事件。进一步分析表明:西南地区东部区域性暴雨事件的持续时间主要为2天,最长为5天;事件的累积强度集中在500~1000 mm之间,累积面积集中在10×10~4~20×10~4km~2。西南地区东部区域性暴雨事件多发于5-9月,其中7月最多,占总发生频次的31.7%。四川东部和重庆西部的平原区是暴雨事件的频发和强度中心地区。近58年西南地区东部持续性区域暴雨事件增多[0.57次·(10a)~(-1)],持续时间延长[1.2 d·(10a)~(-1)],最大影响范围扩大[5.7×104km2·(10a)~(-1)],极端强度也增强[73.4 mm·(10a)~(-1)]。  相似文献   

3.
采用2009—2021年陕西省内国家气象站以及区域气象观测站逐日降水资料,以某日出现暴雨站数至少占总站数的4%为识别条件,以降水强度、暴雨范围和持续时间建立综合强度评估指标,此区域暴雨过程识别方法与传统方法相比更加客观,基于此方法的识别结果分析陕西区域性暴雨过程的变化特征。结果表明:陕西区域性暴雨过程出现在4—10月,59.4%出现在夏季,最多发生在7月,33%出现在秋季,最多发生在9月。近13 a首次区域性暴雨出现日期呈提前趋势,平均每年提前1.5 d;末次日期呈缓慢推后趋势,平均每年推后0.7 d。暴雨过程频次平均每年8.2次,其中夏季4.8次,秋季2.7次;暴雨过程频次呈增加趋势,平均每年增加0.3次,夏季增加明显,秋季不显著。覆盖范围呈减小趋势,暴雨站数占比平均每年减少0.1%,局地性增强。76.4%的区域性暴雨过程持续1 d。区域性暴雨频次与陕西特色气候事件密切相关,夏季区域性暴雨多对应初夏汛雨强、伏旱弱,秋季区域性暴雨多对应秋淋强。  相似文献   

4.
利用四川省156个国家气象观测站1961—2021年逐日降水资料,运用暴雨过程综合识别方法及评价指标,探讨四川省区域性暴雨过程时空变化特征。研究表明:1961—2021年四川省共出现875次区域性暴雨过程,过程次数逐年变化整体呈弱增长趋势,综合强度在20世纪90年代到21世纪初持续偏弱,21世纪以后呈现较明显增强趋势。四川区域性暴雨过程主要发生在6月下旬到9月上旬,大多持续1~2 d,区域性暴雨日数大值中心主要分布在盆地西部和东北部,阿坝州中部和东部、甘孜州东南部及攀西地区东北部,6—8月区域性暴雨日数大值中心从盆地东部逐渐向西部变化,9月则在盆地北部;盆地各月平均过程雨量以西部和东北部最强,攀西地区6、9月区域性暴雨日数偏少,但中部和东北部过程雨量强度未明显减弱。  相似文献   

5.
利用1961—2021年陕西省99个国家级气象观测站逐日降水数据,给出了陕西省区域性暴雨过程识别方法;以暴雨过程平均强度、平均影响范围和持续时间为指标,建立了区域性暴雨过程综合强度评估模型,在此基础上分析了陕西省区域性暴雨过程特征及其变化。结果表明:(1)陕西区域性暴雨在4—11月均有出现,主要在6—9月;区域性暴雨一般持续1~2 d,平均12 d。(2)陕西区域性暴雨过程年均78次,年际变化较大;从长期变化来看,一般等级的暴雨过程趋于减少,而偏强等级的暴雨过程在明显增多。(3)首次区域性暴雨出现日期平均为5月31日,末次出现日期平均为9月20日;首次和末次出现日期的年际变化较大,且首次过程出现日期呈提前趋势,特别是近20 a明显提前,而末次过程出现日期没有明显的趋势变化。(4)陕西区域性暴雨可分为东南部型、中南部型、偏西型和偏北型4种空间型,其中中南部型的降水强度较其他分布型更强,强降水范围也更大。  相似文献   

6.
利用1961—2017年广西91个气象观测站逐日降水量资料,通过定义广西区域性暴雨,采用线性趋势计算、低通滤波等方法,统计分析了广西区域性暴雨过程的变化特征。结果表明:广西区域性暴雨过程发生频率较高,全年各月均可有区域性暴雨过程出现,5—8月为多发期,出现次数占全年总数的74.2%;持续天数在5 d以上的区域性暴雨过程主要出现在6—8月,以6月最多。近57 a,广西年及秋季区域性暴雨过程频次呈显著增加趋势,20世纪90年代以来区域性暴雨过程总体偏多、强度偏强,暴雨范围在30站以上的过程明显增多;近10 a秋季过程频次偏多、强度偏强特征尤为明显。  相似文献   

7.
四川盆地区域性暴雨过程的识别及时空变化特征   总被引:1,自引:0,他引:1  
利用四川盆地104个县级气象站逐日降水量资料,建立了新的四川盆地区域性暴雨过程识别方法,并分析了其时空变化特征。研究结果表明:新的区域性暴雨过程识别方法可以排除孤立暴雨站点的影响,快速准确的识别出区域性暴雨过程。1961—2013年四川盆地共计发生区域性暴雨过程216次,与历史灾情资料在发生时间、范围和强度上都有很好的对应关系。1961—2013年四川盆地区域性暴雨过程次数呈逐渐减少的趋势。区域性暴雨过程综合强度在1991—2013年波动幅度有所增大,并出现逐渐增强的趋势,这可能与区域性暴雨过程持续时间变长和累积雨量增加有关。使用旋转正交函数(REOF)方法对区域性暴雨过程频数进行分区研究,发现最常见的是盆西北型,其次是盆东北型,盆南型出现频次相对最少。3种类型的区域性暴雨过程随时间变化差异明显,尤其近20年盆西北型有逐渐减少的趋势,盆东北型有逐渐增多的趋势,而盆南型则无明显的变化趋势。  相似文献   

8.
为了揭示长江中下游地区暴雨变化特征,基于1958~2017年426站点的逐日降水资料,定义4个暴雨特征变量,通过线性趋势分析、累积距平检验、滑动t检验和Pettitt检验进行趋势变化分析以及突变检验。结果表明:1)年暴雨量和年暴雨日数从江西中部向周围递减,年暴雨强度和年暴雨变异系数从南到北逐渐增加;4个暴雨特征变量存在明显的季节差异,夏季是全年暴雨的主要贡献者,春季暴雨明显多于秋季,冬季最少,但其暴雨变异系数最大,波动性强。2)74%站点的年均暴雨量、暴雨日数和暴雨强度呈增加趋势;从西北往东南,年均暴雨量、暴雨日数的线性趋势率逐渐增加。暴雨量和暴雨日数显著增加的站点比分别为17.8%和16.7%(p 0.05)。3)累积距平检验、滑动t检验和Pettitt检验结果表明1988年是近60年长江中下游地区暴雨变化显著的突变点,且1988年后三个暴雨特征变量的平均值和趋势率较1988年前有明显增加。  相似文献   

9.
伍红雨  郭尧  邹燕  陈卓煌 《暴雨灾害》2021,30(3):306-315

利用1961—2019年华南192个地面气象观测站逐日降水资料,定义华南区域性暴雨过程的标准,客观定量评估华南区域性暴雨过程,确定华南年和前、后汛期暴雨过程强度序列,分析其次数和综合强度指数的气候特征及变化。利用NCEP/NCAR再分析资料,采用相关和合成分析方法研究华南前、后汛期暴雨过程强弱年的大气环流特征。结果表明,近59 a来华南共出现1 196次区域性暴雨过程,平均每年20.3次,有82.3%出现在汛期4—9月。华南区域性暴雨过程年发生次数以0.45·(10 a)-1的速率上升,而年强度指数以1.148·(10 a)-1的速率显著增加,特别是后汛期增加最明显。在华南前汛期,高层西风急流加强,东亚大槽日本南段明显加强,副高加强西伸,低层华南位于南北气流的交汇处,有利于前汛期暴雨偏强。在华南后汛期,高层西风急流加强,中层中低纬东亚位势高度增加,低层南海和西太平洋气旋环流增强,中低纬北太平洋海平面气压降低,有利于南海和西太平洋台风的生成,有利于后汛期暴雨偏强。

  相似文献   

10.
伍红雨  郭尧  邹燕  陈卓煌 《湖北气象》2021,40(3):306-315
利用1961—2019年华南192个地面气象观测站逐日降水资料,定义华南区域性暴雨过程的标准,客观定量评估华南区域性暴雨过程,确定华南年和前、后汛期暴雨过程强度序列,分析其次数和综合强度指数的气候特征及变化.利用NCEP/NCAR再分析资料,采用相关和合成分析方法研究华南前、后汛期暴雨过程强弱年的大气环流特征.结果表明...  相似文献   

11.
利用政府间气候变化专门委员会第5次评估报告(IPCC AR5)耦合模式相互比较计划第5阶段(CMIP5)中所包含的8个模式资料,对长江中下游强降水的气候特征在21世纪的变化进行预估,并与此前基于第3阶段(CMIP3)的7个模式的预估结果进行了对比。所用资料既包括模式对20世纪的历史模拟,也包括它们在未来高、中、低三种排放情景(即RCP8.5、RCP4.5、RCP2.6三种代表性浓度路径)下的预估试验资料。结果表明:1)不同模式的预估结果有较好的一致性。相对于20世纪最后20 a(1980—1999年),21世纪不仅强降水事件频次、强降水事件的平均强度增加,且年际变率也有所增强。就增加幅度而言,西部强度较小,东部强度较大。2)就不同排放情景相互比较而言,在低排放情景和高排放情景(RCP2.6和RCP8.5)下,降水强度和频次的增长均比在中等排放情景(RCP4.5)下大。3)与之前CMIP3的结果相比,尽管二者均预估未来降水强度和频次增长,但二者增加幅度的空间分布并不一致。在CMIP5中,表现为自西向东幅度递增的特点,而在CMIP3中则中部地区增幅最大。  相似文献   

12.
为了对长江中下游夏季降水进行短期气候预测,利用国家气候中心提供的74项环流指数和NOAA整编的西太平洋型WP指数、MEI指数、ENSO指数等多种全球环流指数资料,归纳整理了影响长江中下游夏季降水的34个前期春季因子,讨论了前期春季因子与夏季降水的关系,并利用这34个前期春季因子通过数据挖掘中的C4.5算法对1951—2013年(63 a)长江中下游夏季降水,建立判别降水偏多以及偏少的两类决策树预测模型,并分别得到5条和7条综合判别规则。随机选取80%左右历史年份数据作为模型的训练集,两模型的训练集准确率分别为94.12%和93.88%,剩余20%年份数据作为模型测试集,模型的测试预测准确率分别达91.67%和85.71%。模型预测应用也显示结果正确。模型研究和应用显示,基于C4.5算法的长江中下游夏季降水预测模型具有较高的预测准确率,模型构建合理有效,判别规则依据大数据理论,广泛考虑相关因子以及因子的排列组合,智能化选择关键因子,易于客观化、自动化实施,为长江流域汛期降水的短期气候预测提供了新的思路与方法。  相似文献   

13.
李双林  韩乐琼  卞洁 《暴雨灾害》2012,31(3):193-200
利用IPCC AR4气候模式诊断和相互比较项目(PCMDI)20世纪模拟试验资料, 通过模式气候态与观测(再分析)气候态的对比, 从存有完整逐日降水资料的14个模式中挑选出7个对东亚模拟较好的模式(即gfdl cm2.0、 gfdl cm2.1、 cgcm、miroc(m)、 cnrm、 echam、 cgcmt47)。然后, 利用这7个模式在A1B、 A2、 B1三种不同温室气体排放情景下21世纪预估试验结果, 分析长江中下游强降水的未来演变。结果表明: 不同模式模拟结果有较好的一致性。相对20世纪后20年(1980—1999年)的平均而言, 21世纪不仅年平均强降水日数、 单次强降水强度呈现上升趋势, 且其年际变率也增强; 就不同排放情景比较而言, A1B、 A2情景下强降水频次与强度的增强趋势均比B1情景下要大; 就多模式平均来看, 在A1B、 A2、 B1排放情景下, 强降水频次分别增加约30%、 20%、 l5%, 强降水强度分别增加约20%、20%、 10%, 强降水频次的年际标准差在三种情景下均增加约20%, 强降水强度年际标准差分别增加约20%、20%、 10%。这些结果意味着, 未来不仅强降水增加, 且极端暴雨、 大暴雨易于出现, 旱涝也将更为频繁。  相似文献   

14.
利用客观分析资料和常规观测资料,分析了2011年6月长江中下游梅雨锋暴雨的大尺度环流特征,并对其中两次梅雨锋暴雨过程的降水特征和锋生条件进行对比分析。结果表明:(1) 500 hPa 中高纬地区两槽一脊强度均比常年偏强,持续稳定的高纬经向环流形势的存在为梅雨锋强降水持续稳定提供了所需的冷空气,冷空气与印缅槽前稳定的西南气流在长江流域频繁交汇,有利梅雨锋锋生以及形成大范围持续性强降水;(2) 200 hPa 南亚高压北侧强西风急流以及其南侧东风急流均比常年明显偏强;(3) 来自孟加拉湾的西南急流与副热带高压南侧偏强的东南气流辐合形成强南风影响我国华东地区,为梅雨锋强降水提供了充足的水汽输送,梅雨锋区水汽辐合明显加强时段与梅雨期四次强降水过程一一对应;(4) 两次梅雨锋暴雨过程降水特征和锋生条件存在明显差异,前者冷暖空气同时对锋区作用造成能量锋区锋生,是一次对流性降水,后者无冷空气影响,是一次地面静止锋波动引起的稳定性降水。  相似文献   

15.
2016年6—7月,长江中下游地区发生了自1998年以来最严重的强降水事件,造成了重大的经济损失。利用NCEP/NCAR再分析资料和中国2479站逐月及逐日降水资料,研究了2016年梅雨期间长江中下游地区降水与欧亚大陆对流层上层斜压波包活动的关系,并诊断了两者之间的信息流向。结果表明,梅雨期间的高频斜压波动具有明显的下游频散效应。波动起源于黑海,沿西北—东南方向于3—4 d后传至长江中下游地区。斜压波包为长江中下游地区强降水的发生提供了必要的能量。波作用通量矢量的分布表明,梅雨期间逐日均有来自西风带上游的扰动能量向长江中下游流域传播。而梅雨期间降水与斜压波包的信息流关系表明,二者之间存在信息传递。因此,3—4 d并源于黑海附近的斜压波包活动是2016年长江中下游梅雨期间异常降水的成因。这些结果为深刻认识长江中下游地区强降水事件发生的成因和有效预测提供了线索。   相似文献   

16.
近几十年来长江下游地区夏季(6—8月)降水量呈现出显著上升的变化趋势,利用1961—2020年夏季台站降水资料,通过降水项分解法,定量分析了该降水趋势的可能影响因素。结果表明:1)长江下游地区夏季降水的上升趋势主要是由日降水量显著增加造成,而日降水量显著增加主要与整层水汽垂直梯度增大和垂直上升速度增强所导致的降水增加有关;2)长江下游地区对流层低层大气温度因地面升温的加热作用而显著上升,高层大气温度受亚太振荡相位正转负的影响而下降,使得高、低层大气的温差变大,低层大气比湿升高、高层大气比湿降低,导致整层水汽垂直梯度增加,为局地降水的增强提供了充沛的水汽条件;低层大气异常辐合加之显著增长的不稳定能量为垂直上升运动的增强和对流性降水的增加提供了有利的动力和热力条件,从而造成了长江下游地区夏季降水的显著上升趋势。  相似文献   

17.
近50a长江中下游不同量级暴雨的年代际变化特征   总被引:2,自引:0,他引:2  
周晶  翟伶俐  高辉 《气象科学》2018,38(6):780-789
利用1966—2015年中国地面气候资料数据集降水数据,对长江中下游地区春、夏、秋三季不同量级暴雨的年代际变化特征进行了研究。结果表明,暴雨在各季节变化特征明显不同,不同量级间也存在明显差异。暴雨在春秋季变化平稳,但在夏季呈现1990s频发,2000年之后少发的特征,并存在准20 a周期变化。大暴雨则在近30 a来呈现频发的特征,其中春季大暴雨在2010年之后显著增加,秋季大暴雨则在2000年之后明显增加。特大暴雨发生概率很小,但夏季特大暴雨在1990s之后一直呈现频发的趋势,并表现为准32 a的周期变化特征,秋季特大暴雨在2000年之后明显频发。大暴雨、特大暴雨在各季节均表现为近十几年来显著增加的趋势。暴雨和大暴雨均存在明显年代际跃变,这种跃变在暴雨、大暴雨频发的区域增幅更为显著。  相似文献   

18.
1961—2019年长江中下游区域性干旱过程及其变化   总被引:1,自引:0,他引:1  
客观识别区域性干旱过程,评估其强度是开展精准监测、评估干旱影响业务的基础.基于长江中下游地区502个国家级气象站1961—2019年逐日气温、降水资料以及1971—2019年干旱受灾面积,运用气象干旱综合指数(MCI)及区域性干旱过程识别方法,识别出长江中下游地区126次区域性干旱过程,干旱过程的次数随着持续天数增多呈...  相似文献   

19.
汤燕冰  赵璐  高坤 《大气科学进展》2009,26(6):1169-1180
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974--2004 and the NCEP-NCAR reanalysis for 1971--2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 30-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号