首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions of Fe(II) and Fe(III) with the inorganic anions of natural waters have been examined using the specific interaction and ion pairing models. The specific interaction model as formulated by Pitzer is used to examine the interactions of the major components (Na+, Mg2+, Ca2+, K+, Sr2+, Cl, SO4, HCO3, Br, CO32−, B(OH)4, B(OH)3 and CO2) of seawater and the ion pairing model is used to account for the strong interaction of Fe(II) and Fe(III) with major and minor ligands (Cl, SO42−, OH, HCO3, CO32− and HS) in the waters. The model can be used to estimate the activity and speciation of iron in natural waters as a function of composition (major sea salts) and ionic strength (0 to 3 M). The measured stability constants (KFeX*) of Fe(II) and Fe(III) have been used to estimate the thermodynamic constants (KFeX) and the activity coefficient of iron complexes (γFeX) with a number of inorganic ligands in NaClO4 medium at various ionic strengths: In(KFeXFeγX) = InKFeX − In(γFeX) The activity coefficients for free ions (γFe, γx) needed for this extrapolation have been estimated from the Pitzer equations. The activity coefficients of the ion pairs have been used to determine Pitzer parameters (BFeX, BFeX0, CFeXφ) for the iron complexes. These results make it possible to estimate the stability constants for the formation of Fe(II) and Fe(III) complexes over a wide range of ionic strengths and in different media. The model has been used to determine the solubility of Fe(III) in seawater as a function of pH. The results are in good agreement with the measurements of Byrne and Kester and Kuma et al. When the formation of Fe organic complexes is considered, the solubility of Fe(III) in seawater is increased by about 25%.  相似文献   

2.
The strong species of cadmium(II), copper(II), manganese(II) and nickel(II) in an Antarctic seawater sample are investigated by a method based on the sorption of metal ions on complexing resins. The resins compete with the ligands present in the sample to combine with the metal ions. Two resins with different adsorbing strengths were used. Very stable metal complexes were investigated with the strong sorbent Chelex 100 and weaker species with the less strong resin, Amberlite CG-50. Strong species were detected for three of the considered metal ions, but not for Mn(II). Cu(II) is completely linked to species with a side reaction coefficient as high as log αM(I) = 11.6 at pH = 7.3. The ligand concentration was found to be similar to that of the metal ion, and the conditional stability constant was around 1020 M− 1. In the considered sample, only a fraction of the metal ions Cd(II) and Ni(II) is bound to the strong ligands, with side reaction coefficients equal to log αM(I) = 5.5 and 6.5 at pH = 7.3 for Cd(II) and Ni(II), respectively. These findings were confirmed by the test with the weaker sorbent Amberlite CG-50. It can be calculated from the sorption equilibria that neither Mn(II) nor Ni(II) is adsorbed on Amberlite CG-50 under the considered conditions and, in fact, only a negligible fraction of Mn(II) and Ni(II) was adsorbed. A noticeable fraction of Cd(II) was adsorbed on Amberlite CG-50, meaning that cadmium(II) is partially linked to weak ligands, possibly chloride, while no copper(II) was adsorbed on this resin, confirming that copper(II) is only combined in strong species. These results are similar, but not identical, to those obtained for other seawater samples examined in previous investigations.  相似文献   

3.
The distribution of molecular masses of organic ligands for copper(II) in oceanic water was investigated. The bulk dissolved organic matter (DOM) was fractionated by ultrafiltration and organic ligands were extracted from the resultant fractions by using immobilized metal ion affinity chromatography (IMAC). Contributions of total organic ligands were 2.0–4.4% of the bulk DOM in surface waters, as determined by the UV absorbance. In the distribution of molecular masses of organic ligands, relative contribution of the fraction with low molecular masses (<1000 Da) was dominant (49–62%), while 26–33% of the total organic ligands was in the 1000–10,000 Da fraction, leaving 10–19% in the >10,000 Da fraction. The distribution of molecular masses of organic ligands shifted to higher molecular masses, as compared with that of the bulk DOM. The fluorescence intensities of organic ligands were shown to be associated with carboxyl contents, based on peak excitation/emission wavelengths and the pH-dependence of fluorescence. Two ligand classes with different conditional stability constants (log KCuL′≈7 and 9) were determined from fluorescence quenching of ligand fractions during copper(II) titration. Organic ligands in low molecular mass fractions were relatively weak and strong ligands occurred in higher molecular mass fractions. It is suggested that the weaker ligand sites would consist of two or more carboxyl groups (log KHL′=4), whereas carboxyl groups (log =2), which are protonated at lower pH, and primary amine may additionally contribute to the formation of more stable copper(II) complexes of the stronger ligand.  相似文献   

4.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   

5.
Samples of dead biomass from the marine brown algae Fucus ceranoides, Fucus vesiculosus and Fucus serratus were studied for their ability to remove cadmium from aqueous solutions. The metal sorption process is rapid, with 90% of the metal uptake completed within the first 25 min of contact. The kinetic data was described successfully by a pseudo second order chemical sorption process with rate constants of ca. 0.6 g mmol− 1 min− 1. At pH 4.5, the raw biomass of the three species exhibited equilibrium uptake capacities for Cd as high as 0.8 mmol g− 1 (90 mg g− 1), on a dry weight basis, without chemical pretreatment. These sorption capacities are much higher than those reported for activated carbon and chitin. The sorption of Cd was found to increase as pH increases, reaching a plateau at pH 5.Batch sorption experiments and continuous potentiometric titrations of acid-treated biomass samples in 0.05 M NaNO3 were used to derive thermodynamic binding parameters according to the NICCA model. The total amount of acid sites was 2.4–2.9 mmol g− 1, with median values of the affinity distribution for protons and cadmium ions, log H and log Cd, of 3.7 and 2.69, respectively (conditional values). The apparent heterogeneity of the sorbent was successfully taken into account by the empirical NICCA isotherm, which described very well the competition between protons and metal ions, in contrast with a simpler discrete competitive Langmuir model.The experimental results demonstrate that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for cadmium removal from wastewaters. This use would represent an example of exploitation of a renewable marine resource in water treatment technologies for the prevention of heavy metal pollution in the environment.  相似文献   

6.
《Marine Chemistry》1987,21(2):101-116
The speciation of the metal ions in the surface waters of the open ocean has been computed by using critical stability constants describing all of the inorganic complexes that can be formed by the metal ions and inorganic ligands present. The stability constants used were adjusted to change the literature values from 0.10 M ionic strength to the 0.70 M ionic strength of seawater by using a new empirical technique involving experimentally observed variations of stability constants with ionic strength for complexes of similar charge types. For stability constants not listed in Critical Stability Constant compilations, values were estimated by using known trends of stability constants of similar complexes. The speciation determinations made include equilibria with suspended solid phases such as hydroxides, carbonates, and basic carbonates of the metal ions present. Perturbation of metal speciation resulting from the addition of some common chelating agents is determined and the results obtained are discussed in terms of the effects on seawater by the introduction of these chelating agents into the environment. In the 10−9 to 10−7 range of added chelant, EDTA (ethylenediaminetetraacetate), NTA (nitrilotriacetate), TPP (tripolyphosphate) and CIT (citrate) exist in the ocean primarily as their Ca(II) and Mg(II) chelates. EDTA and NTA are the dominant ligands for Cu(II) and Ni(II), while TPP is extensively complexed to Fe(III). CIT strongly influences Cu(II) speciation, while SSA (sulfosalicylate, a well-known Fe(III) reagent) has no influence on any of these metal ions or their complexes.  相似文献   

7.
Abstract

In this paper, two analytical models used worldwide to assess salinity variation in alluvial estuaries are applied to the Ashtamudi estuary, a Ramsar site, southwest coast of India; and Bouregreg estuary, in northwest part of Morocco. The estuaries’ bathymetry is described by an exponential function. Both models are quite similar and use a predictive equation for the dispersion in the estuary mouth (D0). The major difference between the two models is the use of the constant value of K?=?0.5 for the Van der Burgh coefficient (K) and the introduction of the correction factor ζ, which is a function of damping (δ) and shape (γ). The performance of these two models was evaluated by comparing their results with field measurements; this revealed that both analytical models apply well to both the estimation of salinity distribution and the prediction of salt intrusion in the Ashtamudi and Bouregreg estuaries (Ashtamudi: RMSE = 0.60–1.22 ppt; Bouregreg: RMSE = 0.92–2.71 ppt). One model agrees more with the field measurements of salinity distribution along the estuaries axis; the second underestimate and overestimate some values of salinity distribution along the estuaries. Possibly, the constant value of K?=?0.5 for the Van der Burgh coefficient (K) has applicability limits for the estuaries under tidal conditions. The specifying of the parameterization may be a field of research.  相似文献   

8.
Adsorption kinetics of the interaction between Pt, Pd and Rh(defined here as platinum group elements, PGEs)ions and macromolecular organic compounds(MOCs, 10 kDa), including humic acid, carrageenan and bovine serum albumin, and different cutoff fractions of natural organic matter(1 kDa and 3 kDa) obtained from seawater using centrifugal ultrafiltration devices were investigated. For a given element, all the adsorption kinetics did not reach equilibrium except the interaction between Pt and 1 kDa cutoff, and between Pd and humic acid.For all the tested MOCs, the adsorption kinetics could be divided into two stages, a rapid adsorption process in the first 8 h and the desorption stage after the first 8 h until the equilibrium. The change trend of partition coefficient(log_(10)K_d) values with experiment time was consistent with that of the kinetic curves. However, in the interaction between PGE ions and natural dissolved organic matter(NDOM), an obvious difference in the change trends of log_(10)K_d and kinetic curves was observed. It indicated that the partition behavior of PGE ions interacting with NDOM in seawater was a combined effect of different organic constituents. The adsorption and log_(10)K_d of PGEs in the 1 kDa NDOM fraction were higher and more stable than those in the 3 kDa NDOM fraction. The results also indicated that the 1–3 kDa NDOM may dominate the interaction between PGEs ions and NDOM. Moreover, no kinetic model could perfectly simulate the adsorption process. It indicated that the colloidal struction and morphology of MOCs or NDOM in seawater might be inhomogeneous. Hence, the interaction between PGE ions and organic matter in seawater was a complicated process and needs further research.  相似文献   

9.
Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19 μmol site mg−1 C, and a log K′ of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu–FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC50 of 58.9 μg l−1. However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC50 ranging from 55.6 μg l−1 in the no-FA control to 137.4 μg l−1 in the 20 mg l−1 FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu–FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.  相似文献   

10.
合浦珠母贝基质蛋白KRMP-3对二价金属离子选择性的研究   总被引:1,自引:0,他引:1  
用大肠杆菌表达含有GST标签的基质蛋白KRMP-3。利用圆二色谱(Circular Dichroism, CD)研究不同浓度钙离子和镁离子对基质蛋白 KRMP-3二级结构的影响。结果表明,钙离子对其二级结构的变化远大于镁离子;同时,采用荧光淬灭法研究 KRMP-3对钙,镁,锶,钡等二价金属离子的选择性,结果表明, KRMP-3对钙离子有特异性选择性,钙离子与KRMP-3的结合常数K约为103 L/mol,结合位点数 n 近似为1,表明 KRMP-3与钙离子的结合能力适中,推测基质蛋白 KRMP-3对合浦珠母贝( Pinctada fucata)棱柱层形成起到促进作用。  相似文献   

11.
The northern part of Okinawa Island suffers from red soil pollution—runoff of red soil into coastal seawater—which damages coastal ecosystems and scenery. To elucidate the impacts of red soil pollution on the oxidizing power of seawater, hydrogen peroxide (HOOH) and iron species including Fe(II) and total iron (Fe(tot), defined as the sum of Fe(II) and Fe(III)) were measured simultaneously in seawater from Taira Bay (red-soil-polluted sea) and Sesoko Island (unpolluted sea), off the northern part of Okinawa Island, Japan. We performed simultaneous measurements of HOOH and Fe(II) because the reaction between HOOH and Fe(II) forms hydroxyl radical (•OH), the most potent environmental oxidant. Gas-phase HOOH concentrations were also measured to better understand the sources of HOOH in seawater. Both HOOH and Fe(II) in seawater showed a clear diurnal variation, i.e. higher in the daytime and lower at night, while Fe(tot) concentrations were relatively constant throughout the sampling period. Fe(II) and Fe(tot) concentrations were approximately 58% and 19% higher in red-soil-polluted seawater than in unpolluted seawater. Gas-phase HOOH and seawater HOOH concentrations were comparable at both sampling sites, ranging from 1.4 to 5.4 ppbv in air and 30 to 160 nM in seawater. Since Fe(II) concentrations were higher in red-soil-polluted seawater while concentrations of HOOH were similar, •OH would form faster in red-soil-polluted seawater than in unpolluted seawater. Since the major scavenger of •OH, Br, is expected to have similar concentrations at both sites, red-soil-polluted seawater is expected to have higher steady-state •OH concentrations.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) were identified and measured in surface seawater and in the tissues (gills and mantle) of indigenous black mussels, Mytilus galloprovincialis, collected from three coastal sites of Saronikos Gulf (Greece), a gulf that exhibits high levels of pollution. The total PAHs measured by spectrofluorometry in the surface seawater were found in the range of 425–459 ng L−1 at the most polluted sites 1 and 2 (Elefsis Bay–Salamis Island) and in the range of 103–124 ng L−1 at site 3 (Aegina Island). PAHs' sources in seawater were identified by application of specific PAH ratios, such as phenanthrene/anthracene and fluoranthene/pyrene. Levels of PAHs in soft tissues (gills and mantle) of indigenous mussels were much higher than those reported for seawater. Total PAH concentrations in mantle tissues were in the range of 1300–1800 ng g−1 dry weight (dw) tissue at sites 1 and 2 and approximately 380 ng g−1 dw at site 3. In gill tissues total PAH concentrations were in the range of 1480–2400 ng g−1 dw at sites 1 and 2 and approximately 430 ng g−1 dw at site 3. PAHs composition was dominated by two-, three- and four-ring compounds in seawater, where 17 different PAH compounds were identified and measured in mussel tissues. Mussels can be used as sentinel organisms to monitoring PAHs' contamination, since they concentrate PAHs from the surrounding water media and therefore making the chemical analysis simpler and less prone to error than that for water. In surface seawater possible weathering and photodegradation due to hot climates contribute to reduced PAHs concentrations.  相似文献   

13.
东山湾海水中Fe(II)和Fe(III)相互转化围隔实验研究   总被引:1,自引:0,他引:1  
根据2008 年8 月与11 月在东山湾海域获得的调查资料对表层水中溶解态Fe(II)和Fe(III)含量、浮游植物叶绿素a、营养元素及其浓度等环境参数进行分析。结果表明, 夏、秋季海水中Fe(II)浓度及其在总溶解铁中所占比例均与浮游植物叶绿素a 呈正相关, 其相关系数分别为0.7959、0.9219。现场围隔实验表明, 海水中总溶解态Fe 含量在24 h 内有较大的变化, 最大减少量达到17.4%。DS2 站点海水中Fe(II)浓度及其在总溶解铁中所占比例随光照强度增加而增加。最高值与初始值相比较, 叶绿素a 较高的DS2 站点海水中Fe(II)浓度增加较叶绿素a 较低的DS5 号站点高0.053μg/L。Fe(II)和Fe(III)加富实验研究了溶解态的Fe(II)和Fe(III)在海水中相互转化。高浓度的Fe(II)在海水中被氧化成Fe(III),海水中浮游植物也会引发光还原作用使Fe(III)还原成Fe(II)。  相似文献   

14.
The adsorption of Pb2+ and of Cd2+ ions from calcareous Krka river water of various salinities (3, 14, 20 and 38 psu) on calcite (CaCO3, Merck p.a.) was investigated. Simultaneous adsorption of Pb2+ and Cd2+ ions was studied as well. The results suggest that the two ions are adsorbed at different calcite surface sites; Pb2+ remained firmly bound to calcite at all salinities, whereas Cd2+ was firmly bound at low salinities and released at high salinities. Dissolved natural organic ligands at the freshwater-seawater interface (FSI; at 14 psu) promoted and below the FSI (at 20 psu) decreased the adsorption of Cd2+. The experiments were performed at metal concentrations of 8 × 10−8 mol l−1 and at natural pH values around pH 8. Adsorbed amounts of trace metal ions were determined in filtered samples by differential pulse anodic stripping voltammetry (DPASV) with a three-electrode system, after 24 h of equilibration with calcite. Several adsorption models were tested, such as Freundlich's, Langmuir's and Schindler-Stumm's surface coordination model. Adsorption isotherms belong to S-1 class of empirical adsorption isotherms. None gave reasonable values of adsorption constants. The fractional partitioning of adsorbent to the solid phase when normalized to the quantity of adsorbent present (Kd) declined as solid concentration increased. It was found that the surface charge is not responsible for the observed effect. Instead, aggregate size increased, which effected a loss in surface area. This is a reasonable explanation for the observed S-shaped adsorption isotherms curves.  相似文献   

15.
Siderophores play an important role in biological iron acquisition in iron-limited aquatic systems. While it is widely accepted that the solubilization of iron-bearing mineral phases is a key function of siderophores, the mechanism of siderophore-promoted mineral dissolution in aquatic systems is largely unknown. In this study, we investigated the effect of siderophores (desferrioxamine B (DFOB) and aerobactin) on light-induced dissolution of goethite and lepidocrocite in the presence or absence of oxalate in aerated and deaerated suspensions at pH 6. For the irradiated two-ligand system (oxalate/siderophore), the experimental results suggest that oxalate acts as the electron donor for the formation of surface Fe(II), and the siderophore acts as an efficient shuttle for the transfer of surface Fe(II) into solution. Furthermore, even in the absence of an electron donor such as oxalate, both DFOB and aerobactin accelerated the light-induced dissolution of lepidocrocite as compared to the thermal dissolution. Experiments with dissolved Fe(III)–DFOB and Fe(III)–aerobactin complexes suggest that this enhancing effect is not due to photolysis of corresponding surface complexes but to efficient transfer of reduced surface Fe(II) into solution, where surface Fe(II) may be formed, e.g., through photolysis of surface Fe(III)–hydroxo groups. Based on this study, we conclude that the interplay of light and siderophores may play a key role in the dissolution of colloidal iron(III) (hydr)oxides in marine systems, particularly in the presence of efficient electron donors.  相似文献   

16.
To assess the significance of naturally occurring dissolved organic matter (DOM) on complexation of transuranic elements in seawater, a series of bioassay experiments was conducted in which the effect of DOM on the accumulation of 241 Am, 237Pu (III–IV), and 237Pu (V–VI) by the marine diatom Thalassiosira pseudonana was measured. EDTA at 0.3μM complexed both metals substantially, resulting in reduced radio-isotope uptake by the diatom; the greatest effect was on Pu (III–IV). In contrast, there was no apparent complexation of either element by equimolar concentrations of marine fulvic (MFA) or humic acids (MHA), naturally occurring photooxidizable DOM (uncharacterized), or diatom exudates, as none of these materials reduced isotope uptake; on the contrary, there were indications that some of this DOM enhanced transuranic bioaccumulation in the diatom slightly. Subsequent experiments showed this enhancement was probably due to complexation of transition metals by the DOM, leading to fewer ambient ions ‘competing’ for binding sites on the cells; 241 Am uptake rates were negatively correlated (r =? 0.846, P < .01) with Σ ASV-labile Cu + Zn + Cd + Pb. These experiments suggest that naturally occurring DOM may not appreciably complex Am or Pu or greatly affect their bioavailability in the sea.  相似文献   

17.
《Marine Chemistry》2001,74(1):65-85
Here it is demonstrated that both Porphyra spp. and Enteromorpha spp. of macro-algae display similar and very marked seasonal variations in their concentration factor (CF) of Cu, Pb, Cd and Hg in field conditions. The CF variations are specific for each metal and reproducible over several years. The way variations in the biological activity affect the equilibrium and kinetics of the interaction between trace metals and live algae was studied in vitro. Natural seawater was used as the culture medium. Voltammetry was used for the determination of natural organic ligands and trace metals except Hg, which was determined by mercury cold vapour after on-line pre-concentration. Titrations with the relevant metal demonstrated that the maximum binding capacity of the algae was not significantly dependent on the season for Pb (ca. 100 μmol gdry algae−1), Cd (ca. 50 μmol g−1) and Hg (80–100 μmol g−1). Marked seasonal variations were observed for Cu (ca. 40 μmol g−1 in January; 70 μmol g−1 in May; and 100 μmol g−1 in August). The conditional stability constants of metal–algae complexation sites were seasonally independent and similar for both algae: logKMS′=8.5±0.3 (Cu), 5.6±0.2 (Pb), 5.3±0.2 (Cd) and 18.0±0.3 (Hg). Exudates with a strong Cu complexing capacity (logKCuL=12.47±0.06) were determined in cultures with added Cu, Pb or Cd concentrations, and identified by cathodic stripping voltammetry (CSV) as cysteine or glutathione. All the tested metals promoted the liberation of exudates, both cysteine- and glutathione-like ligands were exuded in the presence of Cu, only cysteine-like ligands in the presence of Pb, and only glutathione-like ligands in the presence of Cd, the rise depending of the season of the year, particularly for Cu. Highest levels were produced in the presence of added Pb. When exposed to either 1- or 100-μM total dissolved metal concentrations, the metal uptake, and its rate, varied with the season and the algae.  相似文献   

18.
The sediment–water partitioning of radiolabelled Cd, Hg and Zn has been investigated along an estuarine salinity gradient using samples from the Mersey Estuary, UK. Partitioning was studied using untreated particles, and particles that had been extracted using either a reducing agent (NH2OH.HCl–HOAc) or an oxidising agent (H2O2) in order to qualitatively evaluate the relative roles of Fe–Mn oxides and particulate organic matter (POM), respectively, on metal uptake. The extent of Cd partitioning between sediment and water, parameterised in terms of the distribution coefficient, KD, exhibited a reduction with increasing salinity, regardless of whether or not particles had been digested. However, the magnitude of KD decreased significantly following either chemical treatment, suggesting that both oxides and organic matter are important sorbents for Cd. The KD for Hg in the presence of untreated particles increased with increasing salinity, and chemical reduction of the particles enhanced the uptake of Hg and reinforced this trend. Particle oxidation led to a significant reduction in the KD for Hg, and uptake by the particles decreased with increasing salinity. These observations suggest that POM is considerably more important than Fe–Mn oxides in the removal of aqueous Hg, and that its presence is a prerequisite for enhanced sorption (or salting out) at elevated salinities. The salinity dependence of KD for Zn displayed characteristics of both Cd (below salinities of about 5) and Hg (at greater salinities). However, the magnitude of KD for Zn uptake was relatively insensitive to either chemical treatment, suggesting that oxides, POM, and residual phases contribute to the overall sorption of Zn by estuarine particles. Regression analyses of the metal partition data suggest that sorption to oxides and POM is nonadditive, and that the salinity dependence of metal partitioning results mainly from salinity-controlled interactions between metal and organic matter. Sequential extraction of metals bound to untreated and chemically treated particles in the partitioning experiments indicated that the exchangeability or lability of all metals increased on removal of either oxides or POM. This implies that sorption sites of relatively high energy are destroyed (or become less accessible), or sorption sites of relatively low energy are created (or become more accessible) on chemical treatment. These observations support a conceptual model for the particle surface whose integrity and binding properties are only maintained by the coexistence of and interaction between oxides and organic matter.  相似文献   

19.
In order to improve the understanding of structural and reactive features of sediment organic matter from mangrove swamp as well as evaluate the relationship between such features and the impact from different sources (marine and terrestrial), humic and fulvic acids were isolated from two mangrove swamp sediments located in the Qinglan harbors on Hainan Island, China. One is a forest surface sediment site (WWM2), and the other is an estuary subaqueous sediment site (BMW). The humic and fulvic acids were characterized and compared using chemical and spectroscopic methods, including elemental analysis, thermogravimetric analysis (TGA), Fourier Transformed Infrared Spectroscopy (FTIR), 13C nuclear magnetic resonance (13C NMR) and potentiometric titrations. The results indicated that there were less aliphatic compounds but more aromatic compounds and oxygen-containing functional groups in fulvic acids. Humic acids contained more long-chain hydrocarbons and nitrogen compounds. Comparison of the C/N ratios and δ13C values for the humic substances at both sites indicated a larger marine and/or microbial contribution to the BMW site. Humic substances at the WWM2 site have more acidic functional groups than those of the BMW site. Compared to the literature, more phenolic groups existed in the samples of both sites, which may be due to the autochthonous contribution of mangrove plants.  相似文献   

20.
The biogeochemistry of trivalent iron, manganese, and cobalt in the oceans is dominated by soluble complexes formed with high-affinity organic ligands that are believed to be microbial siderophores or similar biogenic chelating agents. Desferrioxamine B (DFOB), a trihydroxamate siderophore found in both terrestrial and marine environments, has served as a useful model for a large class of microbial siderophores in studies of 1:1 complexes formed with trivalent iron and manganese. However, no data exist concerning DFOB complexes with Co(III), which we hypothesize should be as strong as those with Fe(III) and Mn(III) if the current picture of the ocean biogeochemistry of the three trivalent metals is accurate. We investigated the complexation reaction between DFOB and Co(III) in aqueous solution at seawater pH using base and redox titrations, and then characterized the resulting 1:1 complex Co(III)HDFOB+ using X-ray absorption, resonance Raman spectroscopy, and quantum mechanical structural optimizations. We found that the complex stability constant for Co(III)HDFOB+ (log K [Co(III)HDFOB+] = 37.5 ± 0.4) is in fact five and seven orders of magnitude larger than that for Fe(III)HDFOB+ (log K[Fe(III)HDFOB+] = 32.02) and Mn(III)HDFOB+ (log K[Mn(III)HDFOB+] = 29.9), respectively. Spectroscopic data and the supporting theoretical structural optimizations elucidated the molecular basis for this exceptional stability. Although not definitive, our results nevertheless are consistent with the evolution of siderophores as a response by bacteria to oxygenation, not only because of sharply decreasing concentrations of Fe(III), but also of Co(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号