共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Kaufmann F. M. Strauss J. E. R. Costa B. R. Dennis A. Kiplinger K. J. Frost L. E. Orwig 《Solar physics》1983,84(1-2):311-319
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model. 相似文献
2.
Hard X-ray (?100 keV) time histories of solar flares which occurred on 1978 December 4 and 1979 February 18 are presented. The first flare was observed by 3 identical instruments from near-earth orbit (Prognoz 7) and interplanetary space (Venera 11 and 12). Fine time structure is present down to the 55 ms level for the e-folding rise and fall times. These data may be used to localize the emission region by the method of arrival time analysis. 相似文献
3.
The dynamics of hard X-ray producing electron beams in solar flares can be strongly affected by the occurrence of a reverse current. The parameter diagram for a beam can be divided into three regimes, one of which is the usual thick target case, the two others being due to two different possible consequences of the reverse current. The use of this parameter diagram as a possible diagnostic tool for solar flare hard X-ray sources is discussed, together with the necessary observations and their interpretation.The forthcoming Solar Maximum Mission, complemented with concurrent ground-based efforts provide the next possibility to obtain these observations, given a good coordination of observing programs. We stress the importance of microwave (GHz) ratio observations with good temporal (few sec) and spatial resolution (1) in one dimension, and of reliable spectroscopic methods to determine the density in solar flare hard X-ray sources. 相似文献
4.
《天文和天体物理学研究(英文版)》2019,(12)
Solar hard X-rays(HXRs) appear in the form of either footpoint sources or coronal sources. Each individual source provides its own critical information on acceleration of nonthermal electrons and plasma heating. Earlier studies found that the HXR emission in some events manifests a broken-up power-law spectrum, with the break energy around a few hundred keV based on spatially-integrated spectral analysis,and it does not distinguish the contributions from individual sources. In this paper, we report on the brokenup spectra of a coronal source studied using HXR data recorded by Reuven Ramaty High Energy Solar Spectroscopic Imager(RHESSI) during the SOL2017–09–10 T16:06(GOES class X8.2) flare. The flare occurred behind the western limb and its footpoint sources were mostly occulted by the disk. We could clearly identify such broken-up spectra pertaining solely to the coronal source during the flare peak time and after. Since a significant pileup effect on the RHESSI spectra is expected for this intense solar flare, we have selected the pileup correction factor, p = 2. In this case, we found the resulting RHESSI temperature(~30MK) to be similar to the GOES soft X-ray temperature and break energies of 45–60 keV. Above the break energy, the spectrum hardens with time from spectral index of 3.4 to 2.7, and the difference in spectral indices below and above the break energy increases from 1.5 to 5 with time. However, we note that when p = 2 is assumed, a single power-law fitting is also possible with the RHESSI temperature higher than the GOES temperature by ~10MK. Possible scenarios for the broken-up spectra of the loop-top HXR source are briefly discussed. 相似文献
5.
We study the spatial and temporal characteristics of the 3.5 to 30.0 keV emission in a solar flare on April 10, 1980. The data were obtained by the Hard X-ray Imaging Spectrometer aboard the Solar Maximum Mission Satellite. It is complemented in our analysis with data from other instruments on the same spacecraft, in particular that of the Hard X-ray Burst Spectrometer.Key results of our investigation are: (a) Continuous energy release is needed to substain the increase of the emission through the rising phase of the flare, before and after the impulsive phase in hard X-rays. The energy release is characterized by the production of hot (5 × 107 T 1.5 × 108 K) thermal regions within the flare loop structures. (b) The observational parameters characterizing the impulsive burst show that it is most likely associated with non-thermal processes (particle acceleration). (c) The continuous energy release is associated with strong chromospheric evaporation, as evidenced in the spectral line behavior determined from the Bent Crystal Spectrometer data. Both processes seem to stop just before flare maximum, and the subsequent evolution is most likely governed by the radiative cooling of the flare plasma. 相似文献
6.
Solar flare hard X-ray observations 总被引:2,自引:0,他引:2
Brian R. Dennis 《Solar physics》1988,118(1-2):49-94
Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the Solar Maximum Mission satellite. Flares with three different sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial, spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV. 相似文献
7.
By comparison between SMM HXRBS observation and ground observation of H and Caii K lines for the 2B flare on February 3, 1983, we found that there was a temporal correlation between H intensity and hard X-ray flux at the early stage of the impulsive phase while different peaks in the hard X-ray flux curve represented bursts at different locations. When we combined SMM HXRBS observation with chromospheric flare models, we further found that the temporal coincidence between H intensity and hard X-ray flux could be explained quantitatively by the fact that the H flare was indeed due to the heating by non-thermal electron beams responsible for the emission of hard X-rays. Together with the discussion on coronal density based on chromospheric flare models, it was also shown that the source of electrons seemed to be situated around the top of the flare loop and the column density at the top of the chromosphere in semi-empirical flare models could not be taken as the total material above the top of the chromosphere. 相似文献
8.
The Utrecht solar hard X-ray spectrometer S-100 on board the ESRO TD-1A satellite covers the energy range above 25 keV with 12 logarithmically spaced channels. Continuous sun-pointing is combined with high time resolution: 1.2 s for the four low energy channels (25–90 keV) and 4.8 s for the others. It is emphasized that the instrument design and calibration yield data virtually free of pile-up and other instrumental defects. A complete set of observations is presented for all well-observed flares during the period March 12, 1972 to October 1, 1973, including four from the highly active period August 1–8, 1972. Photon spectra are computed every 1.2 s for each event by deconvolution through the instrument response, rather than by fitting techniques. Using these actual photon spectra, the index γ for the best fitting single power law and the minimum (thick target) injection rate of electrons above 25 keV, F 25, are calculated. Results for γ and F 25 at 1.2 s intervals are presented for each event. Examination of all these results tentatively suggests a real distinction between events of a purely impulsive nature and prolonged events. Techniques of time series analysis are applied to the burst time profiles. Specifically:
- The fluctuations present in the series are shown to be compatible with Poisson noise in the count rate.
- It is emphasized that, without spatial resolution, the X-ray source must be characterized by the e-folding time scale τ of the total count rate; examination of individual τ's through the event shows very few statistically real τ's as short as 1.2 s, confirming (1).
- For all events, the series are Fourier analysed; no small events showed statistically significant periodicities, but the large event of August 4, 1972 exhibited real periods of 30, 60 and 120 s in both the flux and the spectral index.
- Statistically real, small timing differences (~0.2 s) are shown to exist between spike peaks at different photon energies.
9.
On the reconciliation of simultaneous microwave imaging and hard X-ray observations of a solar flare
We have compared microwave imaging data for a small flare with simultaneous hard X-ray spectral observations. The X-ray data suggest that the power-law index of the energy distribution of the radiating electrons is 5.3 (thick-target) which differs significantly from the estimate ( = 1.4) from a homogeneous optically-thin gyrosynchrotron model which fits the radio observations well. In order to reconcile these results, we explore a number of options. We investigate a double power-law energy spectrum for the energetic electrons in the flare, as assumed by other authors: the power law is steep at low energies and much flatter at the higher energies which produce the bulk of the microwaves. The deduced break energy is about 230 keV if we tentatively ignore the X-ray emission from the radio-emitting electrons: however, the emission of soft photons by the flat tail strongly contributes to the observed hard X-ray range and would flatten the spectrum there. A thin-target model for the X-ray emission is also inconsistent with radio data. An inhomogeneous gyrosynchrotron model with a number of free parameters and containing an electron distribution given by the thick-target X-ray model could be made to fit the radio data. 相似文献
10.
S. Tsuneta T. Takakura N. Nitta K. Ohki K. Makishima T. Murakami M. Oda Y. Ogawara 《Solar physics》1983,86(1-2):313-321
This paper presents studies of the vertical structure of hard X-ray flares for two contrasting examples. The 1981 May 13 flare contained a coronal hard X-ray source which was located above 50000 km above the photosphere. On the other hand, the 1981 July 20 flare had a chromospheric double source structure in the initial phase. Electrons in this case were able to stream freely from the corona to the chromosphere. 相似文献
11.
12.
M. Bruner 《Solar physics》1982,113(1-2):101-105
13.
Takeo Kosugi 《Solar physics》1981,71(1):91-105
A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of several subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of 0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are 1 s, 1 s and 3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. 相似文献
14.
The history of solar flare X-ray polarimetry is reviewed and it is shown that as yet, there is no experimental evidence for such polarization. The present experimental limits are at the level of a few percent but these results may be biased by a large thermal component at low energies which may decrease the apparent polarization. To avoid this difficulty it will be necessary to make observations at higher energies where thermal emission is less important.The theoretical estimates of the polarization expected in the solar flare are also reviewed. The best present theoretical estimates are in the range of a few percent and are consistent with the present experimental limits.In this paper we discuss a new satellite instrument that has sufficient sensitivity at high energies to detect the polarization that is predicted by the present theories. The instrument sensitivity for a moderate (M class) event approaches polarization levels of 1% in each of 7 energy bins spanning the 10 to 100 keV range for integration times as short as 10 s. Comparable results can be obtained for an X class flare in 1 s.Presidential Young Investigator. 相似文献
15.
J. R. Lemen G. A. Chanan J. P. Hughes M. R. Laser R. Novick I. T. Rochwarger M. Sackson L. J. Tramiel 《Solar physics》1982,80(2):333-349
We have recently built and tested an instrument designed to measure the polarization of the hard (5–30 keV) X-ray emission from solar flares, and thereby to investigate the energy release mechanism and constrain flare models. In particular, these measurements will help to determine whether hard X-ray bursts are produced by nonthermal or by thermal electrons. The polarimeter makes use of the angular dependence of Thomson scattering from targets of metallic lithium. It has an energy resolution of a few keV, a time resolution of 5 s, and sufficient sensitivity to measure polarization levels (3) of a few percent in about 10 s for a moderate strength solar flare. The instrumental polarization has been directly measured and found to be within the design goal of 1%. This polarimeter is scheduled to be flown as part of the OSS-1 pallet on an early Space Shuttle mission. 相似文献
16.
《Chinese Astronomy and Astrophysics》1999,23(2):208-220
The solar burst event of 1992-06-07 is analyzed in this paper using HXR material of the Yohkoh satellite and radio data at 2840 MHz observed at Beijing Astronomical Observatory. The results show that during the impulsive phase, the pulsational component had two time scales, a longer one of about 30 s, and a shorter one of 1–4 s. The pulsations on the longer scale are found to be correlated with a series of variations in the HXR images of the source region. A physical picture comprising loop-loop interaction and MHD oscillation modulation is presented. 相似文献
17.
Instrumentation for obtaining high time resolution dynamic spectra of solar radio bursts at decimetric wavelengths is described. The spectrograph sweeps the frequency range of 565–1000 MHz at a rate of 100 times per second. All data are recorded both on film and as an analog signal on magnetic tape. The frequency and flux calibrations are discussed. A sampling system which allows the activity at three discrete frequencies to be plotted on a chart recorder is described. 相似文献
18.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE
c
, where 15 keV <E
c
< 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources. 相似文献
19.
Using observations from the ISEE-3 spacecraft, we compare the X-ray producing electrons and escaping electrons from a solar flare on 8 November, 1978. The instantaneous 5 to 75 keV electron spectrum in the X-ray producing region is computed from the observed bremsstrahlung X-ray spectrum. Assuming that energy loss by Coulomb collisions (thick target) is the dominant electron loss process, the accelerated electron spectrum is obtained. The energy spectrum of the escaping electrons observed from 2 to 100 keV differs significantly from the spectra of the X-ray producing electrons and of the accelerated electrons, even when the energy loss which the escaping electrons experienced during their travel from the Sun to the Earth is taken into account. The observations are consistent with a model where the escaping electrons come from an extended X-ray producing region which ranges from the chromosphere to high in the corona. In this model the low energy escaping electrons (2–10 keV) come from the higher part of the extended X-ray source where the overlying column density is low, while the high energy electrons (20–100 keV) come from the entire X-ray source. 相似文献
20.
An observation carried out with a balloon-borne detector of an additional flux of secondary X-rays (E 30 keV) at large depths in the atmosphere is described. This excess is attributed to the emission of very hard X-rays during the solar flare of August 7, 1972. The propagation in the atmosphere of the secondary photons resulting from their electromagnetic interactions in the air is computed by utilizing the Monte Carlo method. The computations agree with the observed flux when a very hard solar X-ray spectrum is assumed. 相似文献