首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zerovalent sulfur and inorganic polysulfides were determined in nine sulfide-rich water wells in central and southern Israel. Although the two locations belong to the same aquifer, they are characterized by different pH and hydrogen sulfide levels. Hydrogen sulfide in the central Israel wells ranged between 19 and 32 μM, and the pH was 7.26 ± 0.07. The southern basin is characterized by lower water circulation, lower pH (around 6.8), and higher hydrogen sulfide levels (>470 μM). Polysulfides were determined by a rapid single-phase methylation using methyl trifluoromethanesulfonate (methyl triflate) reagent. The summary polysulfide concentration for S42−–S72− species was found to be around 0.14–0.75 μM in the central region of Israel and substantially higher, 2.3–4.6 μM in the southern region. The sum of polysulfide zerovalent sulfur and colloidal sulfur was quantitatively detected by cyanide derivatization and compared to polysulfide sulfur determined by methyl triflate derivatization and to the chloroform extraction of zerovalent sulfur. A method for the determination of sulfur undersaturation level—the ratio between dissolved elemental sulfur and its equilibrium concentration in the presence of solid sulfur—based on the observed levels of the major polysulfide species is described. The observed polysulfide speciation was compared with the predicted speciation under sulfur saturation conditions taking into account the water temperature, its ionic strength, and pH. Criteria for sulfur saturation versus unsaturated conditions were established based on (1) the chain length dependence of the ratio between the observed polysulfide concentrations and their predicted value under sulfur saturated conditions, and (2) the difference between the concentration of zerovalent sulfur, as determined by cyanolysis, and the total polysulfide sulfur. According to this dual criterion five of the water wells were classified as being undersaturated with respect to sulfur, though for all the examined water wells the majority of the zerovalent sulfur was in the form of polysulfide sulfur.  相似文献   

2.
 Proposed groundwater withdrawals in the San Luis Valley of Colorado may lower the water table in Great Sand Dunes National Monument. In response, the National Park Service initiated a study that has produced a generalized conceptual model of the hydrologic system in order to assess whether a lowering of the water table might decrease the surface flow of lower Medano Creek. Based upon information obtained during the drilling of several boreholes, there appear to be five important hydrostratigraphic units underlying lower Medano Creek within the upper 30 m of the ground surface: 1. a perched aquifer overlying an aquitard located between about 5 and 6 m below the ground surface; 2. the aquitard itself; 3. an unconfined aquifer located between the upper and lower aquitards; 4. an aquitard located between about 27 and 29 m below the ground surface; and 5. a confined underlying the lower aquitard. Because the areal extent of the aquitards cannot be determined from the borehole data, a detailed conceptual model of the hydrogeologic system underlying lower Medano Creek cannot be developed. However, a generalized conceptual model can be envisioned that consists of a complex system of interlayered aquifers and leaky aquitards, with each aquifer having a unique hydraulic head. Water levels in the perched aquifer rise rapidly to their annual maximum levels in response to the arrival of the flow terminus of Medano Creek during the spring runoff event, and the location of the flow terminus is directly dependent upon the discharge of the creek. Water levels in the deeper, non-perched aquifers do not appear to fluctuate significantly in response to the arrival of the flow terminus, demonstrating that it is unlikely that the proposed groundwater withdrawals will decrease the surface flow of lower Medano Creek. Received: 27 December 1995 · Accepted: 20 February 1996  相似文献   

3.
Industrial wastewater is characterised by the presence of a great quantity of metallic micro-pollutants, among which chromium by its mobility, contaminates the surface and groundwater. The study of different aquifers within the area of Annaba (Algeria) shows extremely variable chromium concentrations in the unconfined aquifer (0–0.22 mg l−1), which becomes practically null in dry period; on the other hand, they remain relatively constant in the deep confined aquifer (about 0.04 mg l−1). To specify the mechanisms of chromium migration in the aquifer system, a study of space–time evolution of chromium concentrations in unconfined aquifer was undertaken, while considering the kinetics of diffusion in the deeper aquifer. Chromium, indirectly reduced microbiologically by sulphate-reducer bacteria in the upper aquifer, is likely to anticipate the auto-depuration capacity of the ground and to reduce the quality of groundwater.  相似文献   

4.
Geology and hydrogeology of the Dammam Formation in Kuwait   总被引:2,自引:0,他引:2  
 The Dammam Formation of Middle Eocene age is one of the major aquifers containing useable brackish water in Kuwait. Apart from the paleokarst zone at the top, the Dammam Formation in Kuwait consists of 150–200 m of dolomitized limestone that is subdivided into three members, on the basis of lithology and biofacies. The upper member consists of friable chalky dolomicrite and dolomite. The middle member is mainly laminated biomicrite and biodolomicrite. The lower member is nummulitic limestone with interlayered shale toward the base. Geophysical markers conform to these subdivisions. Core analyses indicate that the upper member is the most porous and permeable of the three units, as confirmed by the distribution of lost-circulation zones. The quality of water in the aquifer deteriorates toward the north and east. A potentiometric-head difference exists between the Dammam Formation and the unconformably overlying Kuwait Group; this difference is maintained by the presence of an intervening aquitard. Received, February 1997 Revised, June 1997, September 1997 Accepted, January 1998  相似文献   

5.
The aim of this study was to identify the complex hydrogeological and hydrochemistry conditions of Damt region, through determining hydrochemical properties of groundwater in the study area. According to the results of hydrochemical analyses, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Thermal waters in the area are characterized by Na–HCO3, while the cold waters by CaHCO3 facies. HCO3 indiscriminate cation and/or Na-indiscriminate anion are present in many places in the region and indicate generally mixing water. Only three villages with dental fluorosis observed using water elevated in F for drinking. Agricultural and liquid waste disposal are the main sources of pollution, leads to increase of Na, Cl, NO3, Cd, and Iron. The groundwater flow is from north, northwest, and northeast to the south. Within this regional trend, structural controlling groundwater flow along Wadis and it flows from upper reaches of tributaries toward the main channel, then downward to the south of the study area. The similarity of TDS and Cl concentration at Qa’a Al Haql and Al Nadirah between aquifers indicates hydraulic continuity between alluvial and the underlying volcanic, while at Damt no hydraulic continuity found between alluvial, volcanic and Sandstone aquifers. The temporal variation shows slight decrease in the concentration of nitrate and sulfate of thermal water indicating previously high gas content of nitrogen, hydrogen sulfide in the thermal active region. The developed conceptual model of water circulation indicates flood waters infiltrate slowly through the wadi bottoms in the East where Sandstone aquifer outcrops. These waters flow westward, following the westerly dip of the Sandstone through the effects of gravity, gains heat and dissolve materials as it comes in contact with the numerous dykes, which are the feeders to the overlying volcanoes and sputter cones. All thermal water samples from Damt region fall into immature water field in NA–K–Mg diagram. Therefore, the results obtained from the cation geothermometers should be taken into account as doubtful.  相似文献   

6.
Chemical characterization of groundwater is essential to bring out its nature and utility. Samples from shallow and deep ground water of the same location were collected and studied for their geochemical characteristics following standard procedures (APHA 1998). Sediment samples from different depths were collected and analysed for minerals using FTIR and SEM. Resisitivity logging was carried out in the bore well to understand the variations in depth to fresh water potential. The shallow ground water is dominated by Na–Cl–HCO3–SO4 and deeper groundwater by Na–HCO3–SO4–Cl types. It is observed that there is a significant ionic variation with depth. The ionic strength of the deeper samples is lesser than in the shallower samples. Wide pH variations in the shallow water samples are due to ion exchange process. Thermodynamic stability plot was used to identify the state of stability. It is inferred that there is no major significant difference in the thermodynamic state of stability in the shallow and the deeper aquifers as the aquifer matrix for the shallow and deeper aquifers are almost similar. Saturation index of Gibbsite, Kaolinite, Calcite, Dolomite and anhydrite, were studied for shallow and deep aquifers, to identify the difference in hydro chemical signatures. The Si/Al ratios of shallow samples are less when compared with the deeper samples. Leaching of secondary salts was the chief mechanism controlling the ground water chemistry of the region.  相似文献   

7.
Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30–50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Electronic Publication  相似文献   

8.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

9.
Tritium is a short-lived radioactive isotope (T 1/2=12.33 yr) produced naturally in the atmosphere by cosmic radiation but also released into the atmosphere and hydrosphere by nuclear activities (nuclear power stations, radioactive waste disposal). Tritium of natural or anthropogenic origin may end up in soils through tritiated rain, and may eventually appear in groundwater. Tritium in groundwater can be re-emitted to the atmosphere through the vadose zone. The tritium concentration in soil varies sharply close to the ground surface and is very sensitive to many interrelated factors like rainfall amount, evapotranspiration rate, rooting depth and water table position, rendering the modeling a rather complex task. Among many existing codes, SOLVEG is a one-dimensional numerical model to simulate multiphase transport through the unsaturated zone. Processes include tritium diffusion in both, gas and liquid phase, advection and dispersion for tritium in liquid phase, radioactive decay and equilibrium partitioning between liquid and gas phase. For its application with bare or vegetated (perennial vegetation or crops) soil surfaces and shallow or deep groundwater levels (contaminated or non-contaminated aquifer) the model has been adapted in order to include ground cover, root growth and root water uptake. The current work describes the approach and results of the modeling of a tracer test with tritiated water (7.3×108 Bq m−3) in a cultivated soil with an underlying 14 m deep unsaturated zone (non-contaminated). According to the simulation results, the soil’s natural attenuation process is governed by evapotranspiration and tritium re-emission. The latter process is due to a tritium concentration gradient between soil air and an atmospheric boundary layer at the soil surface. Re-emission generally occurs during night time, since at day time it is coupled with the evaporation process. Evapotranspiration and re-emission removed considerable quantities of tritium and limited penetration of surface-applied tritiated water in the vadose zone to no more than ∼1–2 m. After a period of 15 months tritium background concentration in soil was attained.  相似文献   

10.
In the Djerid-Nefzaoua region, southern Tunisia, about 80% of agricultural and domestic water supply is provided by the complex terminal (CT) aquifer. However, 20% of this demand is provided by other hydraulically connected aquifers, namely the continental intercalaire (CI) and the Plio-Quaternary (PQ). Overexploitation of the CT aquifer for agricultural practices has contributed to the loss of the artesian condition and the decline of groundwater level which largely increased the downward leakage from the shallow PQ aquifer. Excess irrigation water concentrates at different rates in the irrigation channels and in the PQ aquifer itself. Then, it returns to the CT aquifer and mixes with water from the regional flow system, which contributes to the salinization of the CT groundwater. A geochemical and isotopic study had been undertaken over a 2-years period in order to investigate the origin of waters pumped from the CT aquifer with an emphasis on its hydraulic relationships with the underlying and the overlying CI and PQ aquifers. Geochemistry indicates that groundwater samples collected from different wells show an evolution of the water types from Na-Cl to Ca-SO4-Cl. Dissolution of halite, gypsum and anhydrite-bearing rocks is the main mechanism that leads to the salinization of the groundwater. Isotopic data indicate the old origin of all groundwater in the aquifer system. Mixing and evaporation effects characterizing the CT and the PQ aquifers were identified using δ2H and δ18O relationship and confirmed by the conjunction of δ2H with chloride concentration.  相似文献   

11.
Sukinda chromite valley is one of the largest chromite deposits of the country and produces nearly 8% of chromite ore. It greatly contributes towards the economic development but at the same time deteriorates the natural environment. It is generally excavated by opencast mining method. In the Sukinda mining area, around 7.6 million tons of solid waste have been generated in the form of rejected minerals, overburden material/waste rock and sub-grade ore that may be resulting in environmental degradation, mainly causing lowering in the water table vis-à-vis deterioration in surface and ground water quality. The study conducted in and around one of the chromite mine of the valley reveals that the concentration of hexavalent chromium is found in the water samples of ground and surface water, mine effluents and seepage water. Hexavalent Chromium (Cr+6) have been found varying between 0.02 mg/l and 0.12 mg/l in mine effluents and 0.03–0.8 mg/l in shallow hand pumps and 0.05 and 1.22 mg/l in quarry seepage. The concentration of Cr+6 in Damsal nalah, the main surface water source in the area, is found varying between 0.03 mg/l and 0.14 mg/l and a increasing trend, which is in the downstream of mining activities, has been observed. Leachate study clearly shows that the soil lying in the vicinity of mine waste dump shows highest concentration of Cr+6. Contaminant migration in ground water depends upon various geohydrological conditions of the area. The study shows that aquifer resistivity varies between 15 Ωm to 150 Ωm and aquifer depth varies from 4 m to 26 m below ground level. The ground water flow and mass transport models were constructed with the help of geo-hydrological and geophysical informations using Visual Modflow software. Contaminant migration and path lines for 20 years have been predicted in two layers model of ground water. The study provided an insight into the likely migration of contaminant in ground water due to leaching from overburden dump of chromite ore and will be helpful in making strategic planning for limiting the contaminant migration in the ground water regime in and around the mining areas.  相似文献   

12.
 The central Ganga Basin is one of the major groundwater reservoirs in India. The Kali-Ganga sub-basin is a micro watershed of the central Ganga Basin, containing a number of productive aquifers. A detailed hydrogeological investigation was carried out, which reveals the occurrence of a single-tier aquifer system down to 163 m bgl (metres below ground level), but at places it is interleaved with clay layers; thus imparting it a two-to three-tier aquifer system. These aquifers are unconfined to confined in disposition. The transmissivity, storage coefficient and hydraulic conductivity are determined as 2178 m2/day, 1.12×10–5 and 120 m/day, respectively. The groundwater of the basin is fresh, of an alkali-bicarbonate type and is suitable for irrigation and domestic use. However, in certain areas, extensive agricultural activities, and domestic and industrial effluents have caused some deterioration of groundwater quality. This study contains data of where the concentration of Fe, Pb, Cd, Cr and Ni are higher than the permissible limits, which may be hazardous to public health. Received: 2 March 2000 · Accepted: 3 July 2000  相似文献   

13.
The Oil and Natural Gas Corporation Limited (ONGC), India, embarked upon exploration and exploitation of deep groundwater under the project named as “Saraswati” in arid Thar desert, Rajasthan, with a societal mission of providing water to the local people and cattle. A 555 m deep well drilled by the ONGC near Jaisalmer town in 2006 encountered a potential aquifer at a depth of 450–500 m. Radiocarbon dating of this well water indicated paleorecharge to be >40,000 yr BP (uncorrected) (Before Present with respect to 1950 AD), while the medium depth (∼200 m) well waters around that area showed an age range of ∼9,000 to 17,000 yr BP (uncorrected). These waters represent pre-Saraswati era recharge, because the mighty Saraswati flowed in this region between 7000–4000 yr BP. The stable isotope (δD and δ18O) and Total Dissolved Solids (TDS) data of these waters clearly indicated absence of communication between the two aquifers (deep and medium depth). However, the extension of this deep aquifer needs to be determined.  相似文献   

14.
The city of Scarborough lies on the eastern margin of the Greater Toronto Area of southern Ontario, Canada, along the northern coastline of Lake Ontario. The City has a population of 500,000 and is presently one of the fastest growing communities in Canada. The City is expanding northwards onto rural land on the south slope of the large Pleistocene glacial Oak Ridges Moraine system. The moraine system is underlain by a thick (150 m) succession of tills, sands and gravels and is a regionally-significant recharge area for three principle aquifer systems that discharge to numerous watercourses that flow to Lake Ontario. Protection of deeper aquifers from surface-generated urban contaminants is a particular concern. A groundwater flow model using Visual MODFLOW was developed for the 350-km2 Rouge River–Highland Creek (RRHC) drainage basin using an extensive GIS-based collection of subsurface geological, geophysical and hydrogeological data, maps of land use and surficial geology. The RRHC model was calibrated against point water level data, known potentiometric surfaces of the principal aquifers and baseflow measurements from streamflow gauging stations and determined to be within acceptable limits. Water balance calculations indicate that 70% of the basin recharge (106,000 m3/day) enters the Upper Aquifer along the crest and immediate flanks of the Oak Ridges Moraine. To the south, Upper Aquifer water moving through fractured till aquitards accounts for more than 75% of recharge to deeper aquifers. Water quality data confirm previous observations that urban- and rural-sourced contaminants (chlorides and nitrates) present in Upper Aquifer waters are moving rapidly into deeper aquifers. Some 83% of total RRHC recharge water is ultimately discharged as baseflow to creeks draining to Lake Ontario; the remainder discharges to springs and along eroding lakeshore bluffs. Model results demonstrate that deeper aquifers are poorly protected from urban contaminants and that long-term protection of ground and surface water quality has to be a priority of municipal planners if the resource is not to be severely degraded. Electronic Publication  相似文献   

15.
Physical and hydraulic properties of sediment from two karst aquifers were measured to determine (1) the similarity of sediment between karst aquifer systems and (2) the importance of sediment in modeling flow through karst aquifers. The sediment from the two systems was similar in size and composition. Within both aquifers, the silt-sized sediment was composed primarily of quartz, with minor amounts of plagioclase and clays. Hydraulic conductivity of the sediment measured directly (falling-head test) ranged from 1.61×10−7 to 1.33×10−6 m s–1 and estimated using the Campbell equation ranged from 8.30×10−8 to 8.98×10−7 m s–1. These values of hydraulic conductivity fall within the span of hydraulic conductivities for carbonate rocks, indicating that the sediment and carbonate matrix could be represented as one mathematical unit in modeling flow through karst aquifers. Statistical agreement in the hydraulic conductivity values generated by the two methods indicates that the estimation technique could be used to calculate hydraulic conductivities; thus allowing karst scientist to collect bulk sediment samples instead of having to collect cores from within karst aquifers. Electronic Publication  相似文献   

16.
Historically, the arid conditions of La Rioja, Argentina have been the main controlling factor in its development. The shortage of surface water, which is fully used, makes groundwater a potential source for development. The government encouraged investment in early 1979, resulting in a 20-fold increase of groundwater extraction by 1998 (0.076–1.450 m3/s, respectively) to cover related needs of agriculture, industry and population growth. This extraction created unjustified uncertainties derived from negative results obtained in hydrological balances. However, a 0.5 m lowering of the water-table surface was experienced. A knowledge of groundwater functioning was required to establish a reliable frame of reference for development and, at the same time, to find possible scenarios of feasible economic activities in harmony with accessible water resources and aptitude of the environment. The flow regime was found to be composed of three main systems: a regional, an intermediate and several local. The intermediate system provides water for the extraction boreholes, and discharges naturally in Salina La Antigua. From the chemical perspective the intermediate system has three groundwater groups. Group I has an outstanding fluoride concentration (1.98–3.10 mg/l) defined to the north of the City of la Rioja and the highest temperature (26.8–33.0°C), the lowest lithium content (0.029–0.059 mg/l) and moderate arsenic (≤0.038 mg/l). Group II has the moderate arsenic content (≤0.38 mg/l) detected to the south of the City of La Rioja and high lithium (0.024–0.085 mg/l), Group III has the lowest TDS (456–931 mg/l) and arsenic (0.007–0.012 mg/l) and the highest lithium (0.067–0.141 mg/l). to A regional flow is represented by Group IV with one order of magnitude higher strontium (4.870 mg/l), lead (0.021 mg/l) and uranium (0.362 mg/l) content than the other groups. Results provide evidence to eliminate several well-established hydro-myths such as “the boreholes are getting dry” and “boreholes are getting saline water”. The aquifer (granular Tertiary and Quaternary material) thickness (≈750m) was defined with the aid of the geological framework, geothermometers and Modflow modelling. The aquifer extent extends far beyond the limits of the study area. Several economic activities were found to be feasible with available groundwater resources and without bordening the environment (fish farming, bottled-water marketing, SPA activities and farming of endangered species).  相似文献   

17.
Contamination of the Paleozoic carbonate aquifer at Walkerton (Ontario, Canada) by pathogenic bacteria following heavy rain in May 2000 resulted in 2,300 illnesses and seven deaths. Subsequent tracer testing showed that there was rapid groundwater flow in the aquifer, and also rapid exchange between the aquifer and the ground surface. Electrical conductivity (EC) profiling during a 3-day pumping test showed that most flow was through bedding-plane fractures spaced about 10 m apart, that there were substantial contrasts in EC in the major fracture flows, and that there were rapid changes over time. Total coliform sampling revealed transient groundwater contamination, particularly after heavy rain and lasting up to a few days. These characteristics can be understood in terms of the dual-porosity nature of the aquifer. Most of the storage is in the matrix, but this can be considered to be static in the short term. Almost all transport is through the fracture network, which has rapid groundwater flow (~100 m/day) and rapid transmission of pressure pulses due to the high hydraulic diffusivity. Rapid recharge can occur through thin and/or fractured overburden and at spring sites where flow is reversed by pumping during episodes of surface flooding. These characteristics facilitated the ingress of surface-derived bacteria into the aquifer, and their rapid transport within the aquifer to pumping wells. Bacterial presence is common in carbonate aquifers, and this can be explained by the well-connected, large-aperture fracture networks in these dual-porosity aquifers, even though many, such as at Walkerton, lack karst landforms.  相似文献   

18.
Hydrogeochemistry of the Koyna River basin,India   总被引:1,自引:1,他引:0  
Hydrogeochemistry of the Koyna River basin, famous for the Koyna earthquake (magnitude 7) of 1967, has been studied. Basalt is the primary aquifer; laterites, alluvium, and talus deposits form aquifers of secondary importance. Groundwater generally occurs under water table conditions in shallow aquifers. Deeper aquifers are associated only with basalts. One hundred and 87 water samples were collected from various sources, such as dugwells, borewells, springs, and surface water, including 40 samples for analysis of iron. Only major constituents were analyzed. Analyses show that the concentrations of Ca2+ exceed that of Mg2+ in almost all water samples; the concentrations of Na+ are generally next to Ca2+ and are always higher than that of K+; and CO3 2– and SO4 2– are very low and are often negligible. Groundwater in borewells tapping deeper aquifers has higher mineralization compared to that in dugwells representing shallow aquifers. Majority of the water samples are dominated by alkaline earths (Ca2+, Mg2+) and weak acids (HCO3 , CO3 2–). Groundwater from shallow aquifers is generally calcium-bicarbonate type (53%) and calcium-magnesium-bicarbonate type (27%). In case of deeper aquifer, it is mostly calcium-magnesium-bicarbonate type (29%), sodium-bicarbonate type (24%), calcium-bicarbonate type (19%), calcium-magnesium-sodium-bicarbonate type (19%) and sodium-calcium-bicarbonate type (9%). Groundwater water is generally fit for drinking and irrigation purposes, except in the lower reaches of the Koyna River basin, which is affected by near water logging conditions.  相似文献   

19.
Kinmen Island is a small, tectonically stable, granitic island that has been suffering from a scarcity of fresh water resources due to excessive annual evapotranspiration over annual precipitation. Recent studies further indicate that shallow (0–70 m) sedimentary aquifers, the major sources of groundwater supply, have already been over-exploited. Therefore, this preliminary study is to investigate the existence of exploitable water resources that can balance the shortage of fresh water on this island. Site characterization data are obtained from island-wide geophysical surveys as well as small-scale tests performed in a study area formed by three deep (maximum depth to 560 m) vertical boreholes installed in mid-east Kinmen northeast to Taiwu Mountain. Vertical fracture frequency data indicate that the rock body is fractured with a spatially correlated pattern, from which three major fracture zones (depths 0–70, 330–360, and below 450 m) can be identified. Geologic investigations indicate that the deepest fracture zone is caused by the large-scale, steeply dipping Taiwushan fault. This fault may have caused a laterally extensive low-resistivity zone, a potential fractured aquifer, near Taiwu Mountain. The middle fracture zone is induced by the Taiwushan fault and intersects the fault approximately 21 m southeast of the study area below a depth of 350 m. Slug testing results yield fracture transmissivity varying from 4.8 × 10−7 to 2.2 × 10−4 m2/s. Cross-hole tests have confirmed that hydraulic connectivity of the deeper rock body is controlled by the Taiwushan fault and the middle fracture zone. This connectivity may extend vertically to the sedimentary aquifers through high-angle joint sets. Despite the presence of a flow barrier formed by doleritic dike at about 300 m depth, the existence of fresh as well as meteoric water in the deeper rock body manifests that certain flow paths must exist through which the deeper fractured aquifers can be connected to the upper rock body. Therefore, groundwater stored within the Taiwushan fault and the associated low-resistivity zone can be considered as additional fresh water resources for future exploitation.  相似文献   

20.
Evaluation of groundwater environment of Kathmandu Valley   总被引:1,自引:1,他引:0  
Kathmandu Valley aquifer in central Nepal is continuously under stress since the commencement of mechanized extraction of groundwater resources in early 1970s. Many wells have been drilled in shallow and deep aquifers of the valley; and numerous studies have been made in last four decades to understand the aquifers. However, up-to-date information on well inventory, water extraction, water quality and overall situation of groundwater environment are not yet known in the absence of institutional responsibility in groundwater management. This study attempts to evaluate current state of the groundwater environment considering natural and social system together; to better understand origin of stresses, their state, expected impact and responses made/needed to restore healthy groundwater environment. The analysis reveals increasing population density (3,150–4,680 persons/km2), urbanization (increase in urban population from 0.61 to 1.29 million) and increasing number of hotels due to tourism (23–62 hotels) during a decade are acting as driving forces to exceed groundwater extraction over recharge (extraction = 21.56 and recharge = 9.6 million-cubic meter-a-year), decrease in groundwater levels (13–33 m during 1980–2000 and 1.38–7.5 m during 2000–2008), decline in well yield (4.97–36.17 l/s during mid-1980s to 1998) and deterioration in water quality. In the absence of immediate management intervention with institutional responsibility for groundwater development, regulation and knowledgebase management (i.e. to facilitate collection, integration and dissemination of knowledge); situation of groundwater environment are expected to deteriorate further. Groundwater modeling approach may help to suggest appropriate management intervention under current and expected future conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号